Классическое естествознание и его методология
Хронологически этот период, а значит, становление естествознания как определенной системы знания, начинается примерно в XVI-ХVII вв. и завершается на рубеже XIX-XX вв. В свою очередь данный период можно разделить на два этапа: этап механистического естествознания (до 30-х гг. XIX в.) и этап зарождения и формирования эволюционных идей (до конца XIX - начала XX в.).
I. Этап механистического естествознания. Начало этого этапа совпадает со временем перехода от феодализма к капитализму в Западной Европе. Начавшееся бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) потребовало решения целого ряда технических задач. А это в свою
1 Степин В.С. Теоретическое знание. М., 2000. С. 98.
очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую значимость приобрела механика — в силу необходимости решения названных задач.
Активное деягельностное отношение к миру требовало познания его существенных связей причин и закономерностей, а значит, резкого усиления внимания к проблемам самого познания и его форм, методов, возможностей, механизмов и т. п. Одной из ключевых проблем стала проблема метода. Укрепляется идея о возможности изменения, переделывают природы, на основе познания ее закономерностей, все более осознается практическая ценность научного знания («знание — сила»). Механистическое естествознание начинает развиваться ускоренными темпами.
В свою очередь этап механистического естествознания можно условно подразделить на две ступени — доныотоновскую и ньютоновскую, — связанные соответственно с двумя глобальными научными революциями, происходившими в XVI—XVII вв. и создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.
Доныотоновская ступень — и соответственно первая научная революция происходила в период Возрождения, и ее содержание определило гелиоцентрическое учение Н Коперника (1473—1543).
Это был конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов, — это и было первой научной революцией, подрывавшей также и религиозную картину мира. Кроме того, он высказал мысль о движении как естественном свойстве материальных объектов, подчиняющихся определенным законам, и указал на ограниченность чувственного познания («Солнце ходит вокруг Земли»). Но Коперник был убежден в конечности мироздания: Вселенная где-то заканчивается твердой сферой, на которой закреплены неподвижные звезды. Нелепость такого взгляда показал датский астроном Тихо Браге, а особенно Д. Бруно. Он отрицал наличие центра Вселенной, отстаивал тезис о ее бесконечности и о бесчисленном количестве миров, подобных Солнечной системе.
Вторую глобальную научную революцию ХУ11 в. чаще всего связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленыотоновскую ступень развития механистического естествознания. В учении Г. Галилея (1564—1642) уже были заложены достаточно прочные ос
новы нового механистического естествознания. В центре его научных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки.
Исходным пунктом познания, по Галилею, является чувственный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным и реальным или мысленным экспериментированием, опирающимся на строгое количественно-математическое описание. Критикуя непосредственный опыт, Галилей первым показал, что опытные данные в своей пер-возданности вовсе не являются исходным элементом познания, что они всегда нуждаются в определенных теоретических предпосылках. Иначе говоря.опыт не может не предваряться определенными теоретическими допущениями, не может не быть «теоретически нагруженным».
Вот почему Галилей, в отличие от «чистого эмпиризма» Ф. Бэкона (при всем сходстве их взглядов), был убежден, что «фактуальные данные» никогда не могут быть даны в их «девственной первозданности». Они всегда так или иначе «пропускаются» через определенное теоретическое «видение» реальности, в свете которого они (факты) получают соответствующую интерпретацию. Таким образом, опыт - это очищенный в мысленных допущениях и идеализациях опыт, а не просто (и не только) простое описание фактов.
Галилей выделял два основных метода экспериментального исследования природы:
1. Аналитический («метод резолюций») — прогнозирование чувственного опыта с использованием средств математики, абстракций и идеализации. С помощью этих средств выделяются элементы реальности (явления, которые «трудно себе представить»), недоступные непосредственному восприятию (например, мгновенная скорость). Иначе говоря, вычленяются предельные феномены познания, логически возможные, но не представимые в реальной действительности.
2. Синтетически-дедуктивный («метод композиций») — на базе количественных соотношений вырабатываются некоторые теоретические схемы, которые применяются при интерпретации явлений, их объяснении.
Достоверное знание в итоге реализуется в объясняющей теоретической схеме как единство синтетического и аналитического, чувственного и рационального. Следовательно, отличительное свойство метода Галилея — построение научной эмпирии, которая резко отлична от обыденного опыта.
Оценивая методологические идеи Галилея, В. Гейзенберг отмечал, что «Галилей отвернулся от традиционной, опиравшейся на Аристотеля науки своего времени и подхватил философские идеи Платона... Новый метод стремился не к описанию непосредственно наблюдаемых фактов, а скорее, к проектированию экспериментов, к искусственному созданию феноменов, при обычных условиях не наблюдаемых, и к их расчету на базе математической теории»'. Гейзенберг выделяет две характерные черты нового метода Галилея: а) стремление ставить каждый раз новые точные эксперименты, создающие идеализированные феномены; б) сопоставление последних с математическими структурами, принимаемыми в качестве законов природы.
Способ мышления Галилея исходил из того, что одни чувства без помощи разума не способны дать нам истинного понимания природы, для достижения которого нужно чувство, сопровождаемое рассуждением. Имея в виду прежде всего галилеев-ский принцип инерции, А. Эйнштейн и Л. Инфельд писали: «Открытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в истории человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, т. е. они иногда ведут по ложному следу»2.
Иоган Кеплер (1571—1630) установил три закона движения планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточнил расстояние между Землей и Солнцем и др. Но Кеплер не объяснил причины движения планет, ибо динамика — учение о силах и их взаимодействии — была создана позже Ньютоном. Вторая научная революция завершилась творчеством Ньютона (1643—1727), научное наследие которого чрезвычайно глубоко и разнообразно, уже хотя бы потому, что, как сказал он сам, «я
1 Гейзенберг В. Шаги за горизонт. М., 1987. С. 232.
2 Эйнштейн А., Инфельд Л. Эволюция физики. М., 1964. С. 10.
стоял на плечах гигантов». Главный труд Ньютона — «Математические начала натуральной философии» (1687) — это, по выражению Дж. Бернала, «библия новой науки», «источник дальнейшего расширения изложенных в ней методов». В этой и других своих работах Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирного тяготения, теоретически обосновал законы Кеплера (создав тем самым небесную механику), и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли, Луны и планет, морские приливы и др.).
Кроме того, Ньютон — независимо от Лейбница — создал дифференциальное и интегральное исчисление как адекватный язык математического описания физической реальности. Он был автором многих новых физических представлений — о сочетании корпускулярных и волновых представлений о природе света, об иерархически атомизированной структуре материи, о механической причинности и др. Построенный Ньютоном фундамент, по свидетельству Эйнштейна, оказался исключительно плодотворным и до конца ХГХ в. считался незыблемым.
Научный метод Ньютона имел целью четкое противопоставление достоверного естественнонаучного знания вымыслам и умозрительным схемам натурфилософии. Знаменитое его высказывание «гипотез не измышляю» было лозунгом этого противопоставления.
Содержание научного метода Ньютона (метода принципов) сводится к следующим основным «ходам мыслей»:
1) провести опыты, наблюдения, эксперименты;
2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми;
3) понять управляющие этими процессами фундаментальные закономерности, принципы, основные понятия;
4) осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;
5) построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов, т. е. «прийти к законам, имеющим неограниченную силу во всем космосе» (В. Гейзенберг);
6) «использовать силы природы и подчинить их нашим целям в технике» (В.Гейзенберг).
С помощью этого метода были сделаны многие важные открытия в науках. На основе метода Ньютона в рассматриваемый период был разработан и использовался огромный «арсенал» самых различных методов. Это прежде всего наблюдение, эксперимент, индукция, дедукция, анализ, синтез, математические методы, идеализация и др. Все чаще говорили о необходимости сочетания различных методов.
Сам Ньютон с помощью своего метода решил три кардинальные задачи. Во-первых, четко отделил науку от умозрительной натурфилософии и дал критику последней. («Физика, берегись метафизики!») Под натурфилософией Ньютон понимал «точную науку о природе», теоретико-математическое учение о ней. Во-вторых, разработал классическую механику как целостную систему знаний о механическом движении тел. Его механика стала классическим образцом научной теории дедуктивного типа и эталоном научной теории вообще, сохранив свое значение до настоящего времени. В-третьих, Ньютон завершил построение новой революционной для того времени картины природы, сформулировав основные идеи, понятия, принципы, составившие механическую картину мира. При этом он считал, что «было бы желательно вывести из начал механики и остальные явления природы».
Основное содержание механической картины мира, созданной Ньютоном, сводится к следующим моментам.
1. Весь мир, вся Вселенная (от атомов до человека), понимался как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту (ньютоновский принцип дальнодействия).
2. Согласно этому принципу любые события жестко предопределены законами классической механики, так что если бы существовал, по выражению Лапласа, «всеобъемлющий ум», то он мог бы их однозначно предсказывать и предвычислять.
3. В механической картине мира последний был представлен состоящим из вещества, где элементарным объектом выступал атом, а все тела — как построенные из абсолютно твердых, однородных, неизменных и неделимых корпускул — атомов. Главными понятиями при описании механических процессов были понятия «тело» и «корпускула».
4. Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени как арены для движущихся тел, свойства которых неизменны и независимы от самих тел, составляла основу механической картины мира.
5. Природа понималась как простая машина, части которой подчинялись жесткой детерминации, которая была характерной особенностью этой картины.
6. Важная особенность функционирования механической картины мира в качестве фундаментальной исследовательской программы — синтез естественнонаучного знания на основе редукции (сведения) разного рода процессов и явлений к механическим.
Несмотря на ограниченность уровнем естествознания ХУЛ в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание естественных причин и законов природных явлений.
Материалистическая направленность механической картины Ньютона не избавила ее от определенных недостатков и ограни-ченностей. Механистичность, метафизичность мышления Ньютона проявляется, в частности, в его утверждении о том, что материя — инертная субстанция, обреченная на извечное повторение хода вещей, из нее исключена эволюция; вещи неподвижны, лишены развития и взаимосвязи; время — чистая длительность, а пространство — пустое «вместилище» вещества, существующее независимо от материи, времени и в отрыве от них. Ощущая недостаточность своей картины мира, Ньютон вынужден был апеллировать к идеям творения, отдавать дань религиозно-идеалистическим представлениям.
Несмотря на свою ограниченность, механическая картина мира оказала мощное влияние на развитие всех других наук на долгое время. Экспансия механической картины мира на новые области исследования осуществлялась в первую очередь в самой физике, но потом — в других областях знаний. Освоение новых областей потребовало развития математического формализма ньютоновской теории и углубленной разработки ее концептуального аппарата.
Развитие многих областей научного познания в этот период определялось непосредственным воздействием на них идей механической картины мира. Так, в эпоху господства алхимии Р. Бойль выдвинул программу, которая переносила в химию принципы и образцы объяснения, сформулированные в механике. Бойль предлагал объяснить все химические явления исходя из представлений о движении «малых частиц материи» (корпускул).
Механическая картина мира оказывала сильное влияние и на развитие биологии. Так, Ламарк, пытаясь найти естественные причины развития организмов, опирался на вариант механической картины мира, включавший идею «невесомых». Он полагал, что именно последние являются источником органических движений и изменения в живых существах. Развитие жизни, по его мнению, выступает как «нарастающее движение флюидов», которое и было причиной усложнения организмов и их изменения. Довольно сильным влияние механической картины мира было и на знание о человеке и обществе (см. об этом гл. VIII).
Однако по мере экспансии механической картины мира на новые предметные области наука все чаще сталкивалась с необходимостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые все труднее было согласовывать с принципами механической картины мира. Она теряла свой универсальный характер, расщепляясь на ряд частнонаучных картин, начался процесс расшатывания механической картины мира. В середине XIX в. Она окончательно утратила статус общенаучной.
Говоря о механической картине мира, необходимо отличать это понятие от понятия «механицизм». Если первое понятие обозначает концептуальный образ природы, созданный естествознанием определенного периода, то второе — методологическую установку. А именно — односторонний методологический подход, основанный на абсолютизации и универсализации данной картины, признании законов механики как единственных законов мироздания, а механической формы движения материи — как единственно возможной.
Успехи механической теории в объяснении явлений природы, а также их большое значение для развития практики — для техники, для конструирования машин, для строительства, мореплавания, военного дела и т. п. и привели к абсолютизации механической картины мира, которая стала рассматриваться в качестве универсальной.
Таким образом, естествознание рассматриваемого этапа было механистическим, поскольку ко всем процессам природы прилагался исключительно масштаб механики. Стремление расчленить природу на отдельные «участки» и подвергать их анализу каждый по отдельности постепенно превращалось в привычку представлять природу состоящей из неизменных вещей, лишенных развития и взаимной связи. Так сложился метафизический способ мышления, одним из выражений которого и был механицизм как своеобразная методологическая доктрина.
Механицизм есть крайняя форма редукционизма. Редукцио-низм (лат. гейисйо — отодвигание назад, возвращение к прежнему состоянию) — методологический принцип, согласно которому высшие формы могут быть полностью объяснены на основе закономерностей, свойственных низшим формам, т. е. сведены к последним (например, биологические явления — с помощью физических и динамических законов).
Само по себе сведение сложного к более простому в ряде случаев оказывается плодотворным — например, применение методов физики и химии в биологии. Однако абсолютизация принципа редукции, игнорирование специфики уровней (т. е. того нового, что вносит переход на более высокий уровень организации) неизбежно ведут к заблуждениям в познании.
Таким образом, небывалые успехи механики породили представление о принципиальной сводимости всех процессов в мире к механическим. «Поэтому в ХГХ в. механика прямо отождествлялась с точным естествознанием. Ее задачи и сфера ее применяемости казались безграничными. Еще Больцман утверждал, что мы можем понять физический процесс лишь в том случае, если объясним его механически.
Первую брешь в мире подобных представлений пробила мак-свелловская теория электромагнитных явлений, дававшая математическое описание процессов, не сводя их к механике»1.
' Гейзенберг В. Шаги за горизонт. М., 1987. С. 179.
П. Этап зарождения и формирования эволюционных идей — с начала 30-х гг. XIX в. до конца XIX — начала XX в. Уже с конца XVIII в. в естественных науках (в том числе и в физике, которая выдвинулась на первый план) накапливались факты, эмпирический материал, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел главным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии.
Первая линия «подрыва» была связана с активизацией исследований в области электрического и магнитного полей. Особенно большой вклад в эти исследования внесли английские ученые М. Фарадей (1791—1867) и Д. Максвелл (1831—1879). Благодаря их усилиям стали формироваться не только корпускулярные, но и континуальные («сплошная среда») представления.
Фарадей обнаружил взаимосвязь между электричеством и магнетизмом, ввел понятия электрического и магнитного полей, выдвинул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил теорию электромагнитного поля, предсказал существование электромагнитных волн, выдвинул идею об электромагнитной природе света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле. Как писал А. Эйнштейн, «первый удар по учению Ньютона о движении как программе для всей теоретической физики нанесла максвелловская теория электричества...; наряду с материальной точкой и ее движением появилась нового рода физическая реальность, а именно «поле»1.
Успехи электродинамики привели к созданию электромагнитной картины мира, которая объясняла более широкий круг явлений и более глубоко выражала единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов (законы Ампера, Ома, Био—Савара—Лапласа и др.). Поскольку электромагнитные процессы не редуцировались к механическим, то стало формироваться убеждение в том, что основные законы мироздания — не законы механики, а законы электродинамики. Механистический подход к таким явлениям, как свет, электричество, магнетизм, не увенчался успехом, и электродинамика все чаще заменяла механику.
1 Эйнштейн А. Физика и реальность. М., 1965. С. 17.
Таким образом, работы в области электромагнетизма сильно подорвали механическую картину мира и по существу положили начало ее крушению. С тех пор механистические представления о мире были существенно поколеблены и — будучи не в силах объяснить новые явления — механическая картина мира начала сходить с исторической сцены, уступая место новому пониманию физической реальности.
Что касается второго направления «подрыва» механической картины мира, то его начало связано с именами английского геолога Ч. Лайеля (1797—1875) и французскими биологами. Б. Ла-марком (1744-1829) и Ж. Кювье (1769-1832).
Ч. Лайель в своем главном труде «Основы геологии» в трех томах (1830—1833) разработал учение о медленном и непрерывном изменении земной поверхности под влиянием постоянных геологических факторов. Он перенес нормативные принципы биологии в геологию, построив здесь теоретическую концепцию, которая впоследствии оказала влияние на биологию. Иначе говоря, принципы высшей формы он перенес (редуцировал) на познание низших форм. Ч. Лайель — один из основоположников актуали-стического метода в естествознании, суть которого в том, что на основе знания о настоящем делаются выводы о прошлом (т. е. настоящее — ключ к прошлому). Однако Земля для Лайеля не развивается в определенном направлении, она просто изменяется случайным, бессвязным образом. Причем изменение — это у него лишь постепенные количественные изменения, без скачка, без перерывов постепенности, без качественных изменений. А это метафизический, «плоскоэволюционный» подход.
Ж. Б. Ламарк создал первую целостную концепцию эволюции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в результате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию. Провозгласив принцип эволюции всеобщим законом развития живой природы, Ламарк, однако, не вскрыл истинных причин эволюционного развития.
В отличие от Ламарка Ж. Кювье не признавал изменяемости видов, объясняя смену ископаемых фаун так называемой «теорией катастроф», которая исключала идею эволюции органического мира. Кювье утверждал, что каждый период в истории Земли завершается мировой катастрофой — поднятием и опусканием ма-
териков, наводнениями, разрывами слоев и др. В результате этих катастроф гибли животные и растения, и в новых условиях появились новые их виды, не похожие на предыдущие. Причину катастроф он не указывал, не объяснял.
Итак, уже в первые десятилетия ХЕХ в. было фактически подготовлено «свержение» метафизического в целом способа мышления, господствовавшего в естествознании. Особенно этому способствовали дум великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Дарвиным эволюционной теории.
Теория клетки была создана немецкими учеными М. Шлейденом и Т. Шванном в 1838-1839гг. Клеточная теория доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ. Она утвердила общность происхождения, а также единство строения и развития растений и животных.
Открытие в 40-х гг. XIX в. закона сохранения и превращения энергии (Ю. Майер, Д. Джоуль, Э. Ленц) показало, что признававшиеся ранее изолированными так называемые «силы» — теплота, свет, электричество, магнетизм и т. п. — взаимосвязаны, переходят при определенных условиях одна в другую и представляют собой лишь различные формы одного и того же движения в природе. Энергия как общая количественная мера различных форм движения материи не возникает из ничего и не исчезнет, а может только переходить из одной формы в другую.
Теория Ч. Дарвина окончательно была оформлена в его главном труде «Происхождение видов путем естественного отбора» (1859). Эта теория показала, что растительные и животные организмы (включая человека) — не богом созданы, а являются результатом длительного естественного развития (эволюции) органического мира, ведут свое начало от немногих простейших существ, которые в свою очередь произошли от неживой природы. Тем самым были найдены материальные факторы и причины эволюции — наследственность и изменчивость — и движущие факторы эволюции — естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых человеком домашних животных и культурных растений.
Впоследствии теорию Дарвина подтвердила генетика, показав механизм изменений, на основе которых и способна рабо
тать теория естественного отбора. В середине XX в., особенно в связи с открытием в 1953 г. Ф. Криком и Дж. Уотсоном структуры ДНК, сформировалась так называемая систематическая теория эволюции, объединившая классический дарвинизм и достижения генетики.
Дата добавления: 2016-04-02; просмотров: 1335;