Действие электрического поля на вещества
Действие электрического поля на различные вещества неодинаково и зависит от их внутреннего строения. По этому действию все вещества делят на: проводники электрического тока, полупроводники, изоляторы, или диэлектрики.
Проводники характеризуются тем, что в них под действием элект-рического поля образуется электрический ток – направленное движение заряженных частиц. Это происходит благодаря тому, что в проводниках имеются свободные заряды. Существуют проводники 1 рода (металлы, в которых есть свободные электроны) и 2 рода (растворы электролитов, в которых свободными зарядами являются положительно заряженные ионы – катионы и отрицательно заряженные ионы – анионы).
Полупроводники при обычной температуре имеют мало свободных зарядов. Причём когда электроны в полупроводниках становятся свободными, то на их месте образуется дырка – избыток положительного заряда. Поэтому носителями заряда в полупроводниках являются электроны и дырки.
В диэлектриках нет свободных носителей зарядов, поэтому под действием электрического поля в них не возникает электрического тока, но возникает явление, называемое поляризацией диэлектрика – приобретение диэлектриком полярности за счёт разделения в нём положительных и отрицательных зарядов под действием электрического поля. Поляризация существует в 3 вариантах: ориентационная, электронная и ионная.
Указанные различия хорошо описываются зонной теорией твёрдых тел, или квантовой теорией энергетического спектра электронов в кристалле. Согласно теории в кристалле существуют запрещённые и разрешённые энергетические зоны для электронов. Нижние зоны заполнены полностью электронам. Физические свойства кристаллов определяются верхними зонами, содержащими электроны. Если между верхней зоной и следующей разрешённой зоной запрещённая зона узкая (энергетический интервал невелик), то вещество является проводником, а если запрещённая зона велика – то диэлектриком.
Электрический ток
Основной характеристикой электрического тока являетсясила тока – количество заряда, пересекающее поперечное сечение проводника за единицу времени. Iср = Δq/Δt или для мгновенной силы тока: I = dq/dt. Единицей измерения силы тока является ампер (A). 1 ампер – сила тока, когда заряд 1 кулон проходит через поперечное сечение проводника за 1 секунду. Часто используют миллиампер (мА). 1 мА = 0,001 A. Обычно за направление электрического тока в проводнике принимают направление движения положительных зарядов.
Другой величиной, характеризующей электрический ток, является плотность тока – сила тока, приходящаяся на единицу площади проводника. Измеряется в амперах на квадратный метр: J = I/S.
Различают:
· Постоянный ток – электрический ток, параметры которого (сила и направление) не изменяются во времени. Источниками постоянного тока являются генераторы, которые поддерживают постоянную разность потенциалов на концах проводника;
· Переменный ток – электрический ток, параметры которого изменяются во времени по закону синуса или косинуса. Электрический ток, передаваемый в потребительской электросети, представляет собой синусоидальное колебание частотой 50 Гц: I = Imax·cos(ωt + φ0).
Основным законом, описывающим постоянный электрический ток, является закон Ома:сила тока в проводнике прямо пропорциональна разности потенциалов между его концами, или электрическому напряжению (U): I = U/R.
Величина Rназывается электрическим сопротивлением. Сопротивление является свойством проводников препятствовать прохождению через него электрического тока, при этом электрическая энергия превращается в тепловую энергию. Сопротивление возникает из-за столкновения заряженных частиц (носителей тока) с внутренними структурами проводника – атомами и молекулами. Единицей измерения сопротивления является Ом. Обратная величина сопротивлению называется электрической электропроводностью (D).
Для многих веществ сопротивление является постоянной величиной, независимой от силы тока. Сопротивление проводника является функцией его размера, формы, строения и температуры. Величина сопротивления провода:
R = ρ(1/S),
где l– длина проводника, S - площадь поперечного сечения проводника. Константа прямой пропорциональности ρ называется удельным сопротивлением [ом·м] . Она зависит только от свойств вещества и температуры. Обратной величиной удельному сопротивлению является удельная электропроводность (γ) [ом-1·м-1].
На основе удельной электропроводности характеризуют свойство веществ проводить электрический ток. Хорошие проводники тока имеют высокую удельную электропроводность. Изоляторы, или диэлектрики, имеют низкую удельную электропроводность. Полупроводники имеют промежуточную удельную электропроводность. Используя удельную электропроводность, как характеристику вещества, можно представить закон Ома в другой форме: J = γE.
Из формулы следует, что плотность тока в проводнике прямо пропорциональна напряженности электрического поля (Е), создающего этот ток, и удельной электропроводности вещества проводника (γ).
Удельная электропроводность электролитов и биологических тканей:
Плотность тока в растворе электролитов определяется электрическим зарядом положительных и отрицательных ионов, их концентрациями и скоростями движения в электрическом поле: J = q+n+v+ + q-n-v.
Если принять, что концентрация и величина электрического заряда положительных и отрицательных ионов равны, то
J = qn(v+ + v-)
Скорость v ионов пропорциональна напряженности электрического поля E и зависит от подвижности ионов u, которая, в свою очередь, является функцией размера, степени гидратации ионов, вязкости растворителя:
v = uE,
Тогда J = qn(u+ + u-)·E.
Это выражение является законом Ома для растворов электролитов.
Хотя сопротивление биологических тканей постоянному электрическому току велико, и по удельной электропроводности биологические ткани близки к диэлектрикам, для объяснения различий в электропроводности различных тканей, их рассматривают как проводники 2 рода, носителями заряда в которых служат ионы.
Биологические ткани не различаются существенно по их ионному составу, но отличаются условиями ионного перемещения. Поэтому ткани разнородны с точки зрения их электрических свойств. Мембраны клеток препятствуют перемещению ионов. Их электрическое сопротивление является наибольшим. Кровь, лимфа, цереброспинальная жидкость характеризуются низким сопротивлением электрическому току. Внутренние органы, содержащие много воды (мышцы, печень, почки, и т.п.), также имеют сравнительно низкое сопротивление. Но сопротивление таких тканей, как кожа и кости, очень высокое. Постоянный электрический ток плохо проникает через сухую кожу. Он распространяется в теле человека, главным образом, вдоль кровеносных и лимфатических сосудов и через мышцы.
Причиной высокого сопротивления биологических тканей постоянному электрическому току – наличие статической ёмкости вследствие изоляционных свойств мембран и явления поляризации, происходящие в клетках, в результате которых возникает встречная ЭДС, препятствующая прохождению через ткань тока. Причём при малых значениях силы тока он не проходит через ткань вследствие влияния этой ЭДС, а при больших – происходит дезинтеграция (разрушение) клеточных структур, в результате чего сопротивление падает, однако дальнейшие исследования не имеют смысла.
Поляризация – разделение положительных и отрицательных зарядов. многие полагают, что явление поляризации связано с наличием полупроницаемых мембран. Под действием электрического поля ионы начинают перемещаться, но не могут проникнуть через мембрану, в результате у внутренней поверхности мембраны возникает разделение зарядов. Внутри клетки образуется поляризационное поле. Как только его напряженность компенсирует внешнее поле перемещение ионов прекращается. Соответственно этому на внешней стороне мембраны концентрируются противоположно заряженные частицы.
Другие, рассматривая клетки как слоистый диэлектрик, рассматривают явления поляризации как результат гетерогенности клеточных элементов по электропроводности, а также поляризацию связывают с дипольными молекулами (ориентация диполей вдоль силовых линий поля).
Постоянный ток используют в медицинской практике, для реализации двух методов – гальванизации и лекарственного электрофореза.
Гальванизация:
Гальванизация – метод терапии, основанный на применении постоянного электрического тока. Метод назван в честь итальянского врача и ученого Луиджи Гальвани – основоположника изучения электрических токов, генерируемых биологическими тканями.
Метод гальванизации состоит в пропускании постоянного тока через определенные области тела человека. Величина напряжения должна составлять не более 50-80 Вольт. Под электроды, изготовленные из металла, помещают увлажненные фланелевые прокладки. Величина силы тока может составлять от нескольких миллиампер до 50 миллиампер. Но плотность тока не должна превышать 0,1 миллиампер на квадратный сантиметр. Ток не должен беспокоить пациента.
Неорганические ионы и ионы воды перемещаются под действием электрической поля. Подвижность органических ионов значительно меньше, чем неорганических ионов. Наибольшие изменения при гальванизации происходят в мембранах клеток. Они состоят в осуществлении электрохимических процессов, которые изменяют поляризацию мембраны и влияют на проницаемость мембраны и величину трансмембранного потенциала. Эти процессы стимулируют рецепторы, вызывают различные физиологические реакции и изменения метаболизма. Гальванизация используется по большей части для лечения системных болезней нервной системы.
Лекарственный электрофорез:
Гальванизация обычно сопровождается лекарственным электрофорезом. В этом методе постоянный электрический ток используют для введения лекарств в ткани тела с терапевтическими целями. Большое число лекарственных препаратов способны диссоциировать в водных растворах на положительные и отрицательные ионы. Среди таких лекарств: соли, антибиотики, местные анестетики, алкалоиды и много другие. Электрическое поле заставляет их перемещаться: положительные ионы (катионы) к отрицательному электроду (катоду) и наоборот. Под влиянием электрического поля лекарства могут проникать через неповрежденную кожу. Основными путями ионов, проникающих через кожу, являются каналы потовых желез. Наибольшая часть ионов проникает через межклеточное пространство, меньшая - через клетки. Лекарства концентрируются, главным образом, в коже и подкожной ткани и формируют депо. Локальная концентрация лекарств в таком депо может быть сравнительно высокой. Оттуда лекарства медленно поглощаются в кровь, что способствует продлению лечебного эффекта.
Переменный ток:
Полное сопротивление.Электрические цепи переменного тока включают такие основные электрические компоненты как резисторы, конденсаторы и индукторы. Их специфические свойства - сопротивление, емкость и индуктивность.
Емкость.Если два проводника (пластины металла) разделены посредине изоляцией, они способны накапливать некоторое количество электрического заряда. Величина, равная отношению суммарного заряда, накопленного на пластинах, к разности потенциалов между пластинами называется емкостью (измеряется в Фарадах(F):
C = q/U.
Индуктивность.Индуктивность L связана с наличием магнитного поля вокруг провода или катушки, через которые проходит электрический ток. Переменное магнитное поле порождает ЭДС (электродвижущую силу) самоиндукции, которая препятствует изменению силы тока в проводнике:
ε = -L·dl/dt,
где ε - электродвижущая сила, dl/dt - мгновенная скорость изменения силы тока, L - индуктивность, которая зависит от геометрии цепи и от магнитных свойств вещества проводника и среды. Индуктивность измеряется в Генри (Г).
Реактанс (реактивное сопротивление).Ранее упоминалось, что сопротивление является свойством электрической цепи препятствовать прохождению через нее электрического тока и что электрическая энергия при этом превращается в тепловую. Реактанс - мера сопротивления переменному электрическому току. Реактанс связан с емкостью и индуктивностью некоторых частей цепи. Он не превращает электрическую энергию в энергию тепла. Реактанс присутствует дополнительно к сопротивлению, если через проводники протекает переменный ток. Когда в цепи течет постоянный электрический ток, то он подвергается только активному сопротивлению, но не реактансу. Реактанс бывает двух типов: индуктивный и емкостной.
Емкостной реактанс XC является обратной величиной произведения угловой (циклической) частоты тока и емкости этой части цепи:
XC = 1/(ω·C).
Индуктивный реактанс XL равен произведению угловой частоты переменного тока на индуктивность проводника:
XL = ωL.
Доказано, что индуктивный реактанс приводит к тому, что изменения напряжения в электрической цепи опережают изменения силы тока на четверть периода (π/2). Это можно объяснить тем, ЭДС самоиндукции препятствует нарастанию силы тока в цепи.
Наоборот, емкостной реактанс приводит к тому, что изменения напряжения в электрической цепи отстают от изменения силы тока на четверть цикла (π/2).
Поэтому общий реактанс Xпредставляет собой разность индуктивного и емкостного реактансов: X = XL - XC.
Если суммировать активное сопротивление и общий реактанс, который препятствует прохождению переменного тока в электрической цепи, получим величину, которая называется полным сопротивлением Z– импедансом:
.
Дата добавления: 2016-04-02; просмотров: 2628;