Градиентный метод с дроблением шага

В этом варианте градиентного метода величина шага на каждой итерации выбирается из условия выполнения неравенства

(2)

,

где - некоторая заранее выбранная константа.

Процедуру нахождения такого обычно оформляют так. Выбирается число и некоторый начальный шаг . Теперь для каждого k полагают и делают шаг градиентного метода. Если с таким условие (2) выполняется, то переходят к следующему k. Если же (2) не выполняется, то умножают на ("дробят шаг") и повторяют эту процедуру до тех пор пока неравенство (2) не будет выполняться. В условиях теоремы 1 эта процедура для каждого k за конечное число шагов приводит к нужному .

Можно показать, что в условиях теоремы 2 градиентный метод с дроблением шага линейно сходится. Описанный алгоритм избавляет нас от проблемы выбора на каждом шаге, заменяя ее на проблему выбора параметров и , к которым градиентный метод менее чувствителен. При этом, разумеется, объем вычислений возрастает (в связи с необходимостью процедуры дробления шага), впрочем, не очень сильно, поскольку в большинстве задач основные вычислительные затраты ложатся на вычисление градиента.








Дата добавления: 2016-03-30; просмотров: 1015;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.