Фотоприемники с внутренним усилением

В фотоприемниках с внутренним усилением кроме преобразования оптического излучения в электрический ток имеет место еще и усиление фототока.

К ним в первую очередь относятся фототранзистор и фототиристор.

 

Фототранзистор

Фототранзисторы составляют весьма представительный отряд оптоэлектронных фотоприемников, наиболее характерными чертами которого являются наличие механизмов встроенного усиления (отсюда высокая фоточувствительность) и схемотехническая гибкость, обусловленная наличием третьего - управляющего - электрода. В то же время фототранзисторам присуща заметная инерционность, что ограничивает область их применения в основном устройствами автоматики и управления.

От обычного биполярного транзистора фототранзистор отличается тем, что в его корпусе предусмотрено прозрачное окно. Фототранзистор обычно включается в электрическую цепь по схеме с ОЭ (Рис 1.11.). База фототранзистора может не иметь внешнего вывода (оборванная база).

Рассмотрим работу фототранзистора.

Напряжение питания включается между коллектором (К) и эмиттером (Э) таким образом, что коллекторный переход (КП) оказывается закрытым, а эмиттерный – открытым.

При отсутствии светового потока через фототранзистор протекает темновой ток Iкэо.

 

Рис. 1.11. Схема включения фототранзистора
Iт = Iкэо = (β + 1) Iкбо

 

При облучении базовой области в ней начинается генерация носителей. Дырки диффундируют к КП и под действием электрического поля переносятся в коллекторную область, увеличивая собственный ток КП, а электроны остаются в базе, понижая ее потенциал. При этом на ЭП возникает дополнительное прямое напряжение, что усиливает инжекцию дырок из Э в Б. Инжектированные дырки, достигая КП, вызывают увеличение тока коллектора, таким образом ток коллектора определяется выражением:

 

Iк = βIф + Iт,

 

где Iф – фототок.

Фототок в данном случае играет роль тока базы. По сравнению с обычным фотодиодом фототранзистор дает усиление тока в β раз больше, а интегральная чувствительность фототранзистора выше чувствительности фотодиода в β раз: Kфт = βКфд.

Повышение чувствительности – главное преимущество фототранзистора по сравнению с фотодиодом.

Однако это преимущество достигается за счёт резкого снижения температурной стабильности прибора. Поэтому фототранзисторы обычно имеют вывод базы, что позволяет осуществлять температурную стабилизацию режима (при этом имеется некоторый проигрыш в чувствительности). Возможности такой схемы шире, так как на ее вход можно подавать кроме светового электрический сигнал.

Выходные характеристики фототранзистора имеют такой же вид как у обычного транзистора в схеме с ОЭ, но параметром является световой поток.

.

Рис. 1.12 ВАХ фототранзистора.

Световые характеристики фототранзистора линейны и имеют такой же вид, как характеристики фотодиода, работающего с внешним источником напряжения.

 

Фототиристоры

Фототиристором называется четырехслойная структура p-n-p-n, управляемая светом.

Рис. 1.13. Устройство фототиристора

Фототиристор является аналогом управляемого тиристора с тремя p-n переходами, из которых эмиттерные переходы включены в прямом направлении, а коллекторный в обратном.

Величина напряжения на фототиристоре выбирается так, что при отсутствии светового потока он закрыт. При освещении области базы p1 в ней происходит генерация носителей заряда. Электроны диффундируют к коллекторному переходу и переносятся его полем в n2-область и там накапливаются. Накопившиеся в n2-области электроны понижают потенциальный барьер второго эмиттерного перехода, что приводит к увеличению инжекции дырок из p2-эмиттера, которые переносятся в p1-базу. Эти дырки вместе с дырками, инжектируемыми светом, понижают потенциальный барьер первого эмиттерного перехода и увеличивают инжекцию электронов из n1-эмиттера и т.д. Происходит лавинное нарастание тока. Фототиристор переходит в открытое состояние. Чем больше световой поток, тем меньше напряжение включения.

ВАХ фототиристора аналогичны ВАХ обычного тиристора, но параметром является световой поток Ф:

Рис. 1.14 ВАХ фототиристора.

При переходе из закрытого состояния в открытое сопротивление фототиристора уменьшается от сотен МОм до единиц Ом .

Фототиристоры используют для коммутации электрических линий большой мощности.

 

 








Дата добавления: 2016-02-16; просмотров: 2663;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.