Разграничение доступа в Java
Уровень доступа элемента языка является статическим свойством, задается на уровне кода и всегда проверяется во время компиляции. Попытка обратиться к закрытому элементу напрямую вызовет ошибку.
В Java модификаторы доступа указываются для:
- типов (классов и интерфейсов) объявления верхнего уровня;
- элементов ссылочных типов (полей, методов, внутренних типов);
- конструкторов классов.
Как следствие, массив также может быть недоступен в том случае, если недоступен тип, на основе которого он объявлен.
Все четыре уровня доступа имеют только элементы типов и конструкторы. Это:
- public;
- private;
- protected;
- если не указан ни один из этих трех типов, то уровень доступа определяется по умолчанию (default).
Первые два из них уже были рассмотрены. Последний уровень (доступ по умолчанию) упоминался в прошлой лекции – он допускает обращения из того же пакета, где объявлен и сам этот класс. По этой причине пакеты в Java являются не просто набором типов, а более структурированной единицей, так как типы внутри одного пакета могут больше взаимодействовать друг с другом, чем с типами из других пакетов.
Наконец, protected дает доступ наследникам класса. Понятно, что наследникам может потребоваться доступ к некоторым элементам родителя, с которыми не приходится иметь дело внешним классам.
Однако описанная структура не позволяет упорядочить модификаторы доступа так, чтобы каждый следующий строго расширял предыдущий. Модификатор protected может быть указан для наследника из другого пакета, а доступ по умолчанию допускает обращения из классов-ненаследников, если они находятся в том же пакете. По этой причине возможности protected были расширены таким образом, что он включает в себя доступ внутри пакета. Итак, модификаторы доступа упорядочиваются следующим образом (от менее открытых – к более открытым):
private(none) defaultprotectedpublicЭта последовательность будет использована далее при изучении деталей наследования классов.
Теперь рассмотрим, какие модификаторы доступа возможны для различных элементов языка.
- Пакеты доступны всегда, поэтому у них нет модификаторов доступа (можно сказать, что все они public, то есть любой существующий в системе пакет может использоваться из любой точки программы).
- Типы (классы и интерфейсы) верхнего уровня объявления. При их объявлении существует всего две возможности: указать модификатор public или не указывать его. Если доступ к типу является public, то это означает, что он доступен из любой точки кода. Если же он не public, то уровень доступа назначается по умолчанию: тип доступен только внутри того пакета, где он объявлен.
- Массив имеет тот же уровень доступа, что и тип, на основе которого он объявлен (естественно, все примитивные типы являются полностью доступными).
- Элементы и конструкторы объектных типов. Обладают всеми четырьмя возможными значениями уровня доступа. Все элементы интерфейсов являются public.
Для типов объявления верхнего уровня нет необходимости во всех четырех уровнях доступа. Private -типы образовывали бы закрытую мини-программу, никто не мог бы их использовать. Типы, доступные только для наследников, также не были признаны полезными.
Разграничения доступа сказываются не только на обращении к элементам объектных типов или пакетов (через составное имя или прямое обращение), но также при вызове конструкторов, наследовании, приведении типов. Импортировать недоступные типы запрещается.
Проверка уровня доступа проводится компилятором. Обратите внимание на следующие примеры:
public class Wheel { private double radius; public double getRadius() { return radius; }}Значение поля radius недоступно снаружи класса, однако открытый метод getRadius() корректно возвращает его.
Рассмотрим следующие два модуля компиляции:
package first; // Некоторый класс Parentpublic class Parent {} package first; // Класс Child наследуется от класса Parent,// но имеет ограничение доступа по умолчаниюclass Child extends Parent {} public class Provider { public Parent getValue() { return new Child(); }}К методу getValue() класса Provider можно обратиться и из другого пакета, не только из пакета first, поскольку метод объявлен как public. Данный метод возвращает экземпляр класса Child, который недоступен из других пакетов. Однако следующий вызов является корректным:
package second; import first.*; public class Test { public static void main(String s[]) { Provider pr = new Provider(); Parent p = pr.getValue(); System.out.println(p.getClass().getName()); // (Child)p - приведет к ошибке компиляции! }}Результатом будет:
first.ChildТо есть на самом деле в классе Test работа идет с экземпляром недоступного класса Child, что возможно, поскольку обращение к нему делается через открытый класс Parent. Попытка же выполнить явное приведение вызовет ошибку. Да, тип объекта "угадан" верно, но доступ к закрытому типу всегда запрещен.
Следующий пример:
public class Point { private int x, y; public boolean equals(Object o) { if (o instanceof Point) { Point p = (Point)o; return p.x==x && p.y==y; } return false; }}В этом примере объявляется класс Point с двумя полями, описывающими координаты точки. Обратите внимание, что поля полностью закрыты – private. Далее попытаемся переопределить стандартный метод equals() таким образом, чтобы для аргументов, являющихся экземплярами класса Point, или его наследников (логика работы оператора instanceof ), в случае равенства координат возвращалось истинное значение. Обратите внимание на строку, где делается сравнение координат,– для этого приходится обращаться к private -полям другого объекта!
Тем не менее, такое действие корректно, поскольку private допускает обращения из любой точки класса, независимо от того, к какому именно объекту оно производится.
Другие примеры разграничения доступа в Java будут рассматриваться по ходу курса.
Объявление классов
Рассмотрим базовые возможности объявления классов.
Объявление класса состоит из заголовка и тела класса.
Заголовок класса
Вначале указываются модификаторы класса. Модификаторы доступа для класса уже обсуждались. Допустимым является public, либо его отсутствие – доступ по умолчанию.
Класс может быть объявлен как final. В этом случае не допускается создание наследников такого класса. На своей ветке наследования он является последним. Класс String и классы-обертки, например, представляют собой final -классы.
После списка модификаторов указывается ключевое слово class, а затем имя класса – корректный Java-идентификатор. Таким образом, кратчайшим объявлением класса может быть такой модуль компиляции:
class A {}Фигурные скобки обозначают тело класса, но о нем позже.
Указанный идентификатор становится простым именем класса. Полное составное имя класса строится из полного составного имени пакета, в котором он объявлен (если это не безымянный пакет), и простого имени класса, разделенных точкой. Область видимости класса, где он может быть доступен по своему простому имени, – его пакет.
Далее заголовок может содержать ключевое слово extends, после которого должно быть указано имя (простое или составное) доступного не- final класса. В этом случае объявляемый класс наследуется от указанного класса. Если выражение extends не применяется, то класс наследуется напрямую от Object. Выражение extends Object допускается и игнорируется.
class Parent {} // = class Parent extends Object {} final class LastChild extends Parent {} // class WrongChild extends LastChild {} // ошибка!!Попытка расширить final -класс приведет к ошибке компиляции.
Если в объявлении класса A указано выражение extends B, то класс A называют прямым наследником класса B.
Класс A считается наследником класса B, если:
- A является прямым наследником B ;
- существует класс C, который является наследником B, а A является наследником C (это правило применяется рекурсивно).
Таким образом можно проследить цепочки наследования на несколько уровней вверх.
Если компилятор обнаруживает, что класс является своим наследником, возникает ошибка компиляции:
// пример вызовет ошибку компиляцииclass A extends B {}class B extends C {}class C extends A {} // ошибка! Класс А стал своим наследникомДалее в заголовке может быть указано ключевое слово implements, за которым должно следовать перечисление через запятую имен (простых или составных, повторения запрещены) доступных интерфейсов:
public final class String implements Serializable, Comparable {}В этом случае говорят, что класс реализует перечисленные интерфейсы. Как видно из примера, класс может реализовывать любое количество интерфейсов. Если выражение implements отсутствует, то класс действительно не реализует никаких интерфейсов, здесь значений по умолчанию нет.
Далее следует пара фигурных скобок, которые могут быть пустыми или содержать описание тела класса.
Тело класса
Тело класса может содержать объявление элементов (members) класса:
- полей;
- внутренних типов (классов и интерфейсов);
и остальных допустимых конструкций:
- конструкторов;
- инициализаторов
- статических инициализаторов.
Элементы класса имеют имена и передаются по наследству, не-элементы – нет. Для элементов простые имена указываются при объявлении, составные формируются из имени класса, или имени переменной объектного типа, и простого имени элемента. Областью видимости элементов является все объявление тела класса. Допускается применение любого из всех четырех модификаторов доступа. Напоминаем, что соглашения по именованию классов и их элементов обсуждались в прошлой лекции.
Не-элементы не обладают именами, а потому не могут быть вызваны явно. Их вызывает сама виртуальная машина. Например, конструктор вызывается при создании объекта. По той же причине не-элементы не обладают модификаторами доступа.
Элементами класса являются элементы, описанные в объявлении тела класса и переданные по наследству от класса-родителя (кроме Object – единственного класса, не имеющего родителя) и всех реализуемых интерфейсов при условии достаточного уровня доступа. Таким образом, если класс содержит элементы с доступом по умолчанию, то его наследники из разных пакетов будут обладать разным набором элементов. Классы из того же пакета могут пользоваться полным набором элементов, а из других пакетов – только protected и public. private -элементы по наследству не передаются.
Поля и методы могут иметь одинаковые имена, поскольку обращение к полям всегда записывается без скобок, а к методам – всегда со скобками.
Рассмотрим все эти конструкции более подробно.
Объявление полей
Объявление полей начинается с перечисления модификаторов. Возможно применение любого из трех модификаторов доступа, либо никакого вовсе, что означает уровень доступа по умолчанию.
Поле может быть объявлено как final, это означает, что оно инициализируется один раз и больше не будет менять своего значения. Простейший способ работы с final -переменными - инициализация при объявлении:
final double PI=3.1415;Также допускается инициализация final -полей в конце каждого конструктора класса.
Не обязательно использовать для инициализации константы компиляции, возможно обращение к различным функциям, например:
final long creationTime = System.currentTimeMillis();Данное поле будет хранить время создания объекта. Существует еще два специальных модификатора - transient и volatile. Они будут рассмотрены в соответствующих лекциях.
После списка модификаторов указывается тип поля. Затем идет перечисление одного или нескольких имен полей с возможными инициализаторами:
int a;int b=3, c=b+5, d;Point p, p1=null, p2=new Point();Повторяющиеся имена полей запрещены. Указанный идентификатор при объявлении становится простым именем поля. Составное имя формируется из имени класса или имени переменной объектного типа, и простого имени поля. Областью видимости поля является все объявление тела класса.
Запрещается использовать поле в инициализации других полей до его объявления.
int y=x;int x=3;Однако, в остальном поля можно объявлять и ниже их использования:
class Point { int getX() {return x;} int y=getX(); int x=3;}public static void main (String s[]) { Point p=new Point(); System.out.println(p.x+", "+p.y);}Результатом будет:
3, 0Данный пример корректен, но для понимания его результата необходимо вспомнить, что все поля класса имеют значение по умолчанию:
- для числовых полей примитивных типов – 0 ;
- для булевского типа – false ;
- для ссылочных – null.
Таким образом, при инициализации переменной y был использован результат метода getX(), который вернул значение по умолчанию переменной x, то есть 0. Затем переменная x получила значение 3.
Объявление методов
Объявление метода состоит из заголовка и тела метода. Заголовок состоит из:
- модификаторов (доступа в том числе);
- типа возвращаемого значения или ключевого слова void ;
- имени метода ;
- списка аргументов в круглых скобках (аргументов может не быть);
- специального throws -выражения.
Заголовок начинается с перечисления модификаторов. Для методов доступен любой из трех возможных модификаторов доступа. Также допускается использование доступа по умолчанию.
Кроме того, существует модификатор final, который говорит о том, что такой метод нельзя переопределять в наследниках. Можно считать, что все методы final -класса, а также все private - методы любого класса, являются final.
Также поддерживается модификатор native. Метод, объявленный с таким модификатором, не имеет реализации на Java. Он должен быть написан на другом языке (C/C++, Fortran и т.д.) и добавлен в систему в виде загружаемой динамической библиотеки (например, DLL для Windows). Существует специальная спецификация JNI (Java Native Interface), описывающая правила создания и использования native - методов.
Такая возможность для Java необходима, поскольку многие компании имеют обширные программные библиотеки, написанные на более старых языках. Их было бы очень трудоемко и неэффективно переписывать на Java, поэтому необходима возможность подключать их в таком виде, в каком они есть. Безусловно, при этом Java-приложения теряют целый ряд своих преимуществ, таких, как переносимость, безопасность и другие. Поэтому применять JNI следует только в случае крайней необходимости.
Эта спецификация накладывает требования на имена процедур во внешних библиотеках (она составляет их из имени пакета, класса и самого native - метода ), а поскольку библиотеки менять, как правило, очень неудобно, часто пишут специальные библиотеки-"обертки", к которым обращаются Java-классы через JNI, а они сами обращаются к целевым модулям.
Наконец, существует еще один специальный модификатор synchronized, который будет рассмотрен в лекции, описывающей потоки выполнения.
После перечисления модификаторов указывается имя (простое или составное) типа возвращаемого значения; это может быть как примитивный, так и объектный тип. Если метод не возвращает никакого значения, указывается ключевое слово void.
Затем определяется имя метода. Указанный идентификатор при объявлении становится простым именем метода. Составное имя формируется из имени класса или имени переменной объектного типа и простого имени метода. Областью видимости метода является все объявление тела класса.
Аргументы метода перечисляются через запятую. Для каждого указывается сначала тип, затем имя параметра. В отличие от объявления переменной здесь запрещается указывать два имени для одного типа:
// void calc (double x, y); - ошибка!void calc (double x, double y);Если аргументы отсутствуют, указываются пустые круглые скобки. Одноименные параметры запрещены. Создание локальных переменных в методе с именами, совпадающими с именами параметров, запрещено. Для каждого аргумента можно ввести ключевое слово final перед указанием его типа. В этом случае такой параметр не может менять своего значения в теле метода (то есть участвовать в операции присвоения в качестве левого операнда).
public void process(int x, final double y) { x=x*x+Math.sqrt(x); // y=Math.sin(x); - так писать нельзя, // т.к. y - final!}О том, как происходит изменение значений аргументов метода, рассказано в конце этой лекции.
Важным понятием является сигнатура (signature) метода. Сигнатура определяется именем метода и его аргументами (количеством, типом, порядком следования). Если для полей запрещается совпадение имен, то для методов в классе запрещено создание двух методов с одинаковыми сигнатурами.
Например,
class Point { void get() {} void get(int x) {} void get(int x, double y) {} void get(double x, int y) {}}Такой класс объявлен корректно. Следующие пары методов в одном классе друг с другом несовместимы:
void get() {}int get() {} void get(int x) {}void get(int y) {} public int get() {}private int get() {}В первом случае методы отличаются типом возвращаемого значения, которое, однако, не входит в определение сигнатуры. Стало быть, это два метода с одинаковыми сигнатурами и они не могут одновременно появиться в объявлении тела класса. Можно составить пример, который создал бы неразрешимую проблему для компилятора, если бы был допустим:
// пример вызовет ошибку компиляцииclass Test { int get() { return 5; } Point get() { return new Point(3,5); } void print(int x) { System.out.println("it's int! "+x); } void print(Point p) { System.out.println("it's Point! "+p.x+ ", "+p.y); } public static void main (String s[]) { Test t = new Test(); t.print(t.get()); // Двусмысленность! }}В классе определена запрещенная пара методов get() с одинаковыми сигнатурами и различными возвращаемыми значениями. Обратимся к выделенной строке в методе main, где возникает конфликтная ситуация, с которой компилятор не может справиться. Определены два метода print() (у них разные аргументы, а значит, и сигнатуры, то есть это допустимые методы ), и чтобы разобраться, какой из них будет вызван, нужно знать точный тип возвращаемого значения метода get(), что невозможно.
На основе этого примера можно понять, как составлено понятие сигнатуры. Действительно, при вызове указывается имя метода и перечисляются его аргументы, причем компилятор всегда может определить их тип. Как раз эти понятия и составляют сигнатуру, и требование ее уникальности позволяет компилятору всегда однозначно определить, какой метод будет вызван.
Точно так же в предыдущем примере вторая пара методов различается именем аргументов, которые также не входят в определение сигнатуры и не позволяют определить, какой из двух методов должен быть вызван.
Аналогично, третья пара различается лишь модификаторами доступа, что также недопустимо.
Наконец, завершает заголовок метода throws -выражение. Оно применяется для корректной работы с ошибками в Java и будет подробно рассмотрено в соответствующей лекции.
Пример объявления метода:
public final java.awt.Point createPositivePoint(int x, int y) throws IllegalArgumentException{ return (x>0 && y>0) ? new Point(x, y) : null;}Далее, после заголовка метода следует тело метода. Оно может быть пустым и тогда записывается одним символом "точка с запятой". Native - методы всегда имеют только пустое тело, поскольку настоящая реализация написана на другом языке.
Обычные же методы имеют непустое тело, которое описывается в фигурных скобках, что показано в многочисленных примерах в этой и других лекциях. Если текущая реализация метода не выполняет никаких действий, тело все равно должно описываться парой пустых фигурных скобок:
public void empty() {}Если в заголовке метода указан тип возвращаемого значения, а не void, то в теле метода обязательно должно встречаться return -выражение. При этом компилятор проводит анализ структуры метода, чтобы гарантировать, что при любых операторах ветвления возвращаемое значение будет сгенерировано. Например, следующий пример является некорректным:
// пример вызовет ошибку компиляцииpublic int get() { if (condition) { return 5; }}Видно, что хотя тело метода содержит return -выражение, однако не при любом развитии событий возвращаемое значение будет сгенерировано. А вот такой пример является верным:
public int get() { if (condition) { return 5; } else { return 3; }}Конечно, значение, указанное после слова return, должно быть совместимо по типу с объявленным возвращаемым значением (это понятие подробно рассматривается в лекции 7).
В методе без возвращаемого значения (указано void ) также можно использовать выражение return без каких-либо аргументов. Его можно указать в любом месте метода и в этой точке выполнение метода будет завершено:
public void calculate(int x, int y) { if (x<=0 || y<=0) { return; // некорректные входные // значения, выход из метода } ... // основные вычисления}Выражений return (с параметром или без для методов с/без возвращаемого значения) в теле одного метода может быть сколько угодно. Однако следует помнить, что множество точек выхода в одном методе может заметно усложнить понимание логики его работы.
Дата добавления: 2016-03-22; просмотров: 1454;