Работа двигателя на водородном топливе.
Особенности рабочего процесса. По физико-химическим свойствам моторным качествам водород сильно отличается от применяемых в настоящее время топлив, что ведет к ряду особенностей в организации и протекании рабочего процесса ДВС.
С воздухом водород устойчиво воспламеняется в широком диапазоне концентраций — вплоть до а=10. Столь низкий предел воспламенения обеспечивает работу водородного двигателя на всех скоростных режимах в широком диапазоне изменения составов смеси: примерно от а = 0,2 до а=5. В связи с этим мощность водородного двигателя может изменяться качественным регулированием, при котором его КПД на частичных нагрузках увеличивается на 25—50%.
Однако, если максимальное значение эффективного КПД двигателя при работе на водороде выше, чем при работе на бензине, то эффективная мощность заметно падает. Последнее обусловлено очень низкой плотностью водорода, что приводит к уменьшению наполнения двигателя топливом. Например при стехиометрическом составе смеси газообразный водород, поддаваемый вместе с воздухом, занимает почти 30% объема цилиндра, тогда как распыленный и испаренный бензиновый заряд только 2—4%. В целом перевод на водород вызывает снижение мощности двигателя в среднем на 20—25%. Наряду с этим применение водорода ведет к существенному увеличению эмиссии окислов азота с ОГ, основной причиной которого является повышение температуры и скорости сгорания .
Температура воспламенения водородных смесей выше, чем углеводородных, однако благодаря более низким значениям энергии активации для воспламенения водорода требуется меньшее количество энергии,
Высокая"реакционная способность водорода в ряде случаев приводит к обратным проскокам пламени во впускной трубопровод, преждевременному воспламенению и жесткому сгоранию топливных смесей. В значительной степени эти недостатки могут быть ликвидированы путем соответствующей модификации топливоподающей системы двигателя. В настоящее время для подачи водорода в ДВС применяются следующие способы:
-впрыск во впускной трубопровод;
-использование модифицированного карбюратора, применяемого в системах питания пропанобутановыми и природными газами;
-индивидуальное дозирование водорода в область впускного клапана каждого цилиндра;
-непосредственный впрыск под высоким давлением в камеру сгорания;
Первые два способа обеспечивают устойчивую работу двигателя лишь совместно с такими мероприятиями как частичная рециркуляция ОГ, присадка воды к топливному заряду, а также добавка к нему бензина. Частичная рециркуляция ОГ за счет разбавления заряда инертными компонентами предотвращает обратные вспышки и смягчает сгорание при работе двигателя на стехиометрических и богатых смесях. В то же время благодаря снижению максимальных цикловых температур эмиссия гNОx ОГ уменьшается. Количество рециркулируемых газов, как правило, не превышает 10—20% от поступающего в двигатель топливного заряда, однако любая степень рециркуляции ведет к дополнительным потерям наполнения цилиндра. В отличие от рециркуляции ОГ добавление воды или бензина (обычно впрыском во впускной трубопровод) не приводит к ухудшению наполнения двигателя.
Использование водорода в дизельных двигателях затрудняется его высокой температурой самовоспламенения. Поэтому для организации устойчивого воспламенения водорода дизели конвертируются в двигатели с принудительным зажиганием от свечи или запальной дозы жидкого топлива. При этом водород может подаваться как совместно с воздухом, так и путем непосредственного впрыска в цилиндры. Однако устойчивая работа дизеля на водороде обеспечивается только в узком диапазоне топливных смесей, ограниченном пропусками воспламенения и детонацией. В случае газожидкостного процесса граница детонации (рис. 68) определяется составом смеси и ее температурой. Повышение дозы запального топлива улучшает антидетонационную стойкость смеси и в то же время расширяет границы воспламеняемость.
Рис. 68. Границы устойчивой работы дизельного двигателя на водороде:
/ — детонация; 2 — воспламенение
Дата добавления: 2016-02-16; просмотров: 715;