Агранулярная(гладкая) ЭПС без рибосом называется.

Рис. 5.Схема строения ЭПС: 1 – гранулярная ЭПС, 2 – агранулярная ЭПС, 3 – ядро клетки, 4 – фиксированные к мембране рибосомы, 5 – наружная ядерная мембрана.

►Основные функциигранулярной ЭПС связаны с синтезами белков «на экспорт», структурных белков клеточных мембран и ферментов лизосом.

►Основные функции гладкой ЭПС сопряжены с небелковыми синтезами (липиды, холестерин, гликоген и др.), накоплением и транспортом кальция, обезвреживанием ядовитых продуктов эндо- и экзогенного происхождения.

►По каналам ЭПС осуществляется поступление синтезированных веществ в комплекс Гольджи для их накопления.

►Усиление внутриклеточной синтетической активности клетки сопряжено с расширением цистерн и канальцев ЭПС и увеличением их количества

Г.2.1.3. Комплекс Гольджи (рис. 6) представляет собой интеграцию полиморфных мембранных структур в околоядерной зоне клетки.

Рис. 6.Схема строения комплекса Гольджи: 1 – мембранные цистерны, 2 – мембранные вакуоли, 3 – секреторные гранулы, 4 – первичные лизосомы.

 

В состав комплекса Гольджи входят следующие структуры:

пакеты уплощенных мембранных цистерн

большие и малые мембранные вакуоли

секреторные гранулы (мембранные пузырьки с секретируемым содержимым)

первичные лизосомы

► Комплекс Гольджи выполняет в клетке ряд важных функций:

► накопление и упаковка в гранулы (гранулообразование) синтезируемых на ЭПС веществ;

►выведение из клетки продуктов секреции;

►сборка новых биологических мембран для внутриклеточной регенерации(мембраногенез);

►образование лизосом.

При функциональной активизации клетки в комплексе Гольджи происходит расширение цистерн, увеличение количества вакуолей и секреторных гранул.

Комплекс Гольджи особенно хорошо развит в секреторных клетках.

Г.2.1.4. Лизосомы (рис.7)

Представляют собой мембранные пузырьки

Ихдиаметр составляет 0,2 – 0,4 мкм

●Заполнены ферментами - катализаторами лизиса белков, жиров и углеводов. Эти ферменты синтезируются на шероховатой ЭПС и поступают в лизосомы через комплекс Гольджи

Лизосомальная мембрана образуются в комплексе Гольджи.. Мембранная стенка лизосомы устойчива к действию собственных ферментов.

Среди лизосом выделяют: первичные (мелкие , малоактивные), вторичные (крупные активные), аутолизосомы (обеспечивают процессы аутолиза – растворения и уничтожения собственных структур клетки), гетеролизосомы (обеспечивают процессы расщепления и растворения продуктов эндоцитоза – см.ниже)

Количество лизосом в клетке крайне изменчиво. Число аутолизосом возрастает при усилении процессов, сопряженных с разрушениями клеточных структур (усиление процессов функционирования и внутриклеточной регенерации, повреждения клетки и др.).

При старении клетки имеет место увеличение количества аутолизосом с пониженной ферментативной активностью. Это приводит к накоплению в клетке «недопереваренных» продуктов эндоцитоза и аутофагии, которые называются остаточными тельцами, т.е. происходит «замусоривание» клетки.

 

Функции лизосом связаны с процессами внутриклеточного и внеклеточного пищеварения:

►активизированные (вторичные) лизосомы участвуют в

расщеплении и лизисе продуктов эндоцитоза;

►отдельная популяция лизосом, аутолизосомы, выделяя свои ферменты в гиалоплазму или сливаясь с измененными органеллами, инициируют процессы аутолиза (ферментативное растворение собственных структур клетки) и аутофагии.

► некоторые клетки (например, макрофаги) выделяют лизосомальные ферменты в межклеточное пространство для разрушения остатков погибших клеток и тканей собственного организма, а также внедрившихся микроорганизмов.

 

 

Рис. 7.Лизосомы и пероксисомы: 1 –лизосома, 2 – эндосома, 3 – пищеварительная вакуоль, 4 – остаточное тельце, 5 – комплекс Гольджи, 6 – пероксисома, 7 – цитолемма.

 

Г.2.1.5. Пероксисомы (рис.7)

Представляют собоймембранные пузырьки.

Ихдиаметр составляет 0,2 – 0,4 мкм.

Заполнены ферментами метаболизма перекиси водорода.

Отшнуровываются от расширенных участков канальцев гладкой ЭПС.

Имеются во всех клетках, ноособенно многочисленны в клетках печени и почек, где активно протекают процессы дезинтоксикации (обезвреживание ядовитых продуктов метаболизма).

 

Функции пероксисом связаны с процессами внутриклеточной дезинтоксикации:

► образование перекиси водорода – сильнейшего окислителя, который используется в целях дезинтоксикации (обезвреживания) конечных продуктов клеточного метаболизма.

►разрушение «избытков» перекиси водорода, которая обладает токсическим действием на клетку.

 

Г.2.1.6. Рибосомы(рис. 8) – немембранные органеллы.

Функционирующие рибосомы состоят из двух связанных субъединиц (большой и малой), образованных рибонуклеопротеидами.

Размер рибосом не превышает 25 нм.

 

 

Рис. 8.Схема рибосомы: 1 – большая субъединица, 2 – малая субъединица.

Субъединицы рибосом образуются в ядрышке, а их сборка происходит в цитоплазме.

Часть рибосом располагается в гиалоплазме - свободные рибосомы, другие рибосомы связываются с мембранами шероховатой ЭПС - связанные рибосомы.

Некоторые рибосомы объединяются в комплексы – полисомы.

Кроме цитоплазматических рибосом имеются митохондриальные рибосомы, которые кодируются митохондриальной ДНК. Часть рибосом находится на наружной мембране кариолеммы (ядерная оболочка см. ниже).

 

Функции рибосом связаны с генетически запрограммированным внутриклеточным синтезом белка.

 

Г.2.1.7. Центросома - клеточный центр (рис. 9)


Рис. 9.Схема клеточного центра: 1 – материнская центриоль, 2 – дочерняя центриоль, 3 –центросфера

 

Центросома-комплексный немембранный органоид,

Центросомаявляется частью цитоскелета (см. ниже).








Дата добавления: 2016-02-13; просмотров: 3200;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.