Металлические и неметаллические неорганические покрытия
Защитные и защитно-декоративные металлические и неметаллические неорганические покрытия в основном наносятся следующими ТМ:
1) Электролитический (гальванический);
2) Химический;
3) Анодизационный;
4) Горячий;
5) Диффузионный;
6) Металлизационный;
7) Конденсационный и др.
Условия эксплуатации металлических неорганических покрытий, наносимых основными ТМ, делятся на группы:
- легкая, Л;
- средняя, С;
- жесткая, Ж;
- очень жесткая, ОЖ.
При этом на эти покрытия устанавливаются следующие требования:
1. Минимальная толщина покрытия должна обеспечивать требуемую защитную способность покрытия или другие его специальные свойства;
2. Покрытия предусмотренные для более жестких условий эксплуатации, в необходимых случаях могут применятся для более легких условий;
3. Допускаются способы защиты, соответствующие более легким условиям эксплуатации для определенных видов деталей и изделий:
а) При работе изделий в условиях, обеспечивающих отсутствие контакта изделий с внешней средой;
б) Под слоем смазки;
в) При специальном уходе за изделием;
г) При сроках службы изделий более коротких, чем срок действия защитного покрытия;
4. Детали, работающие в масляной среде, не вызывающей коррозии, допускается применять без покрытий;
5. На детали, на которые по условиям сопряжения невозможно нанести покрытия с толщинами, указанными в технической документации, допускается наносить покрытия меньших толщин при условии дополнительной защиты этих деталей;
6. Для обеспечения требуемого сопряжения деталей в сборочных единицах допускается занижение размеров деталей до нанесения покрытий с учетом их необходимой толщины;
7. Поверхность детали в глухих или узких отверстиях, мелких каналах, зазорах и щелях, где электролитические покрытия могут отсутствовать, должна быть защищена от коррозии смазками или ЛКП;
8. Наносить покрытия на разъемные сборочные единицы в собранном виде не допускается;
9. Минимальная толщина покрытия на рабочей поверхности изделия выбирается из ряда толщин;
10. Детали из алюминия и его сплавов толщиной менее 0,8мм не рекомендуется подвергать глубокому анодному окислению и др.
Основные металлические покрытия:
I.Цинковое покрытие. Цинк электрохимически и механически защищают сталь от коррозии при эксплуатации в атмосферных условиях при температурах , при более высоких температурах он защищает сталь только механически. Резко спадают защитные свойства цинка в воде при температуре . Для повышения коррозионной стойкости цинковые покрытия подвергают хроматированию или фосфатированию;
II. Кадмиевое покрытие. Кадмий по своим защитным свойствам близок к цинку. Но в отличие от него он пластичен и поэтому незаменим при защите от коррозии ответственных резьбовых и сопряженных деталей, узлы которых требуют плотной сборки. Кадмируют изделия из стали, чугуна, меди и медных сплавов. Кадмий защищает сталь от коррозии в морской атмосфере и в морской воде электрохимически, а в пресной воде – преимущественно механически. Покрытие характеризуется прочным сцеплением с основным металлом. Для повышения коррозионной стойкости кадмиевое покрытие подвергают хроматированию или фосфатированию;
III.Никелевое покрытие. Является катодным по отношению к стали, алюминиевым и цинковым сплавам и обеспечивает их защиту от коррозии механически. Для защиты от потускнения на электрохимическое никелевое покрытие наносят хромовое покрытие. Для повышения защитных свойств никелевого покрытия и покрытия никель-хром рекомендуется дополнительное гидрофобизирование;
IV.Хромовое покрытие. Хромовое покрытие стали алюминиевых и цинковых сплавов обеспечивает защиту от коррозии. Для повышения коррозионной стойкости хромовое покрытие подвергается фофатированию с последующим гидрофобизированиям;
V. Медное покрытие. Является катодным по отношению к стали, алюминиевым и цинковым сплавам. Для защиты от коррозии как самостоятельное покрытие не применяется;
VI.Оловянное покрытие. В атмосферных условиях по отношению к стали является катодным, во многих органических средах – анодным. Для оловянных покрытий характерна значительная пористость. Оловянное покрытие является анодным по отношению к меди и медным сплавам, содержащим более 50% меди и др.
Основные неметаллические неорганические покрытия:
I.Для деталей из алюминиевых сплавов:
1) Анодно-окисное покрытие. Применяется для защиты от коррозии, подвергается наполнению в дистиллированной воде или в растворе бихромата калия, в зависимости от их назначения. Эти покрытия являются хорошей основой для нанесения ЛКП, клеев, герметиков и т.п. Для придания деталям декоративного вида анодно-окисные покрытия наполняются в растворах различных красителей. При анодном окислении размеры деталей увеличиваются на 0,15 толщины покрытия (на сторону). Качество анодно-окисного покрытия повышается с уменьшением шероховатости поверхности деталей;
2) Химически-окисное покрытие. Является хорошей основой для нанесения ЛКП. Как самостоятельное применяется для защиты от коррозии в легких условиях эксплуатации;
II. Для деталей из малоуглеродистых и низколегированных сталей. Стальные изделия оксидируют для защиты от коррозии при эксплуатации их в легких условиях. Защитные свойства оксидных пленок при атмосферной коррозии повышают дополнительной обработкой маслами. Пленки обладают малым сопротивлением на истирание. Цвет покрытия в зависимости от режима процесса меняется от блестяще-черного до темно-серого:
1) Воронение. Оксидирование термическим способом; применяется при отделке мелких стальных изделий;
2) Синение. Оксидирование стальных полированных изделий термическим способом; применяется для обработки часовых стрелок, пружин, винтов и других подобных изделий;
3) Фофатно-оксидное покрытие (бесщелочное оксидирование). Применяется при антикоррозионной и декоративной обработке поверхности изделий из углеродистой и коррозионностойкой стали, а также изделий из цинковых сплавов и по цинковым покрытиям. Сопротивление истиранию и коррозионная стойкость таких покрытий значительно выше, чем оксидных. Толщина фосфатооксидной пленки колеблется от 1 до 4 мкм, при этом линейные размеры изделия не изменяются;
4) Фофатирование. Применяется для защиты поверхности стальных изделий от коррозии, не требующих декоративного вида. Твердость фосфатной пленки зачастую превосходит твердость меди и латуни, но не стойка против истирания. Однако линейные размеры деталей увеличиваются на 5-8мкм.;
5) Химически-фосфатное покрытие. Обладает сравнительно низкими защитными свойствами в связи с пористым строением. Для повышения коррозионной стойкости фосфатированные детали подвергаются окраске, промасливанию, гидрофобизированию или другой обработке в зависимости от условий эксплуатации. Толщина покрытия может быть 2-15мкм в зависимости от технологии подготовки поверхности и нанесения покрытия;
III.Для деталей из коррозионно-стойких сталей:
1) Химически-пассивное покрытие. Коррозионная стойкость деталей из коррозионно-стойких сталей определяется качеством пассивных покрытий. Качество пассивного покрытия определяется полнотой удаления окалины, содержанием хрома в поверхностном слое и технологией пассивирования. Коррозионная стойкость деталей из коррозионностойких сталей улучшается при уменьшении шероховатости поверхности. Для механически обрабатываемых резанием деталей рекомендуются параметры шероховатости поверхности Ra=0,63мкм. Наибольшей стойкостью обладают механически и (или) электрохимически полированные детали. Покрытие не рекомендуется применять для деталей из сталей с пониженным содержанием хрома (типа 12Х13) или (и) с повышенным содержанием углерода;
IV.Для деталей из меди и медных сплавов:
1) Химически-пассивное покрытие. Применяется для деталей из меди и медных сплавов, когда нанесение металлических покрытий недопустимо. Покрытие имеет пористое строение. Для повышения коррозионной стойкости пассивированные поверхности рекомендуется гидрофобизировать;
2) Химическое анодно-окисное покрытие. Защитные свойства покрытия невысокие и могут быть повышены пропиткой нейтральными маслами или путем гидрофобизирования. Не рекомендуется оксидировать детали, подвергающиеся пайке и имеющие паяные соединения.
Дата добавления: 2016-02-13; просмотров: 1839;