ПОНЯТИЕ ОБ УСТОЙЧИВОСТИ.
Раньше при сжатии стержня прочность проверяли по формуле:
; или – по допускаемым напряжение.
Эти формулы предполагают, что все время вплоть до разрушения стержень работает на осевое сжатие. Однако, если имеем дело с длинным стержнем, то разрушение произойдет при напряжениях значительно меньших, чем при сжатии короткого стержня (от потери устойчивости). Записанные выше формулы справедливы только для коротких стержней. Рассмотрим поведение длинного стержня под нагрузкой.
Здесь различают 3 состояния:
1) устойчивое состояние, когда стержень под действием нагрузки сохраняет первоначальную форму. Если этот стержень незначительно отклонить какой-либо поперечной силой, а затем убрать эту силу, то он примет первоначальное положение.
2) безразличноесостояние – это такое состояние, когда стержень может находиться в любом положении: а) в первоначальном; б)если отклонить незначительно, то остается в отклоненном положении. Нагрузка соответствующая этому состоянию называется критической.
3) неустойчивоесостояние – это такое состояние, когда нагрузка больше критической - происходит разрушение
Для инженера интерес представляет безразличное состояние, т.е. ytj,[jlbvj научиться находить силу Р при которой стержень начинает разрушаться.
Критическая сила при осевом сжатии. (формула Эйлера)
:Критическая сила может иметь бесчисленное множество значений.
– формула Леонардо-Эйлера |
Инженера интересует наименьшее значение критической силы, когда n=1
Влияние способа закрепления концов стержня на величину критической силы.
При других способах закрепления концов стержня критическая сила определяется по формуле:
где - коэффициент приведения длины, зависящий от способа закрепления концов стержня. Значения приведены на рисунках.
Критические напряжения и пределы применения формулы Эйлера.
σкр = Ркр /А - критическое напряжение, где А – площадь поперечного сечения стержня.
обозначим , где λ- гибкость стержня, - наименьший радиус инерции.
После подстановки получим критическое напряжение:
Формулой Эйлера не всегда можно воспользоваться.
Вывод формулы Эйлера исходит из уравнения ЕI y//=M , где Е- модуль упругости материала. | Как видно из диаграммы за пределом пропорциональности модуль упругости меняет свою величину, поэтому формулу Эйлера нельзя применять при напряжениях превышающих предел пропорциональности. |
– пределы применимости формулы Эйлера.
Пояснение: когда λ найденная по формуле окажется больше чем можно использовать формулу Эйлера для определения σкр..
Например, для стержня, изготовленного из стали с пределом пропорциональности
σпц = 200 МПа = 20кн/см2 , Е =2,1∙106 кг/см2 =2,1 ∙ 104 кн/см 2 можно пользоваться формулой Эйлера при гибкости: т.е. для стали 3 при справедлива формула Эйлера.
Аналогичным образом получим условия применимости формулы Эйлера для чугуна: .
Для стержней малой и средней гибкости в результате экспериментальных исследований Ф. Ясинский получил формулы:
σкр= σО. – для стержней малой гибкости при λ=(0÷100)
σкр= σтек – для пластичных материалов
σкр= σпч – для хрупких материалов
σкр= а-в∙λ – формула Ясинского, где а и b - коэффициенты, зависящие от материала;
где а=3100кг/см2 b =11,4кг/см2. - для стержней из стали 3.
(или а=2400кг/см2 b =4кг/см2- по новым результатам исследований для мягко пластичных сталей).
Формула Ясинского применима для стержней средней гибкости λ=60÷100 для стали 3.
Имея формулы Эйлера и формулы Ясинского можно построить график зависимости λ от σкр..
Практическая формула для расчета на устойчивость.
Вместо двух формул Эйлера и Ясинского удобно иметь одну. Выведем эту практическую формулу. Известно, что прочность стержня, нагруженного осевой силой Р, можно проверить по формуле , где .
На устойчивость проверим по формуле . Обозначим получим
(3) |
- проверка устойчивости при расчете по допускаемым напряжениям.
| - проверка устойчивости при расчете по расчетным сопротивлениям, где Rу – предел текучести (расчетное сопротивление). Абрутто – площадь поперечного сечения брутто (без учета ослаблений). |
По формулам 3 и 4 проверяется стержень на устойчивость, кроме этого не следует забывать, что стержень необходимо проверить еще на прочность по формуле:
(по допускаемым напряжениям) или (по расчетным сопротивлениям).
Ан – площадь поперечного сечения нетто (с учетом ослаблений, отверстий и т.д.)
– постоянные величины для данного материала. Поэтому будет зависеть от σкр. Учитывая, что между σкр. и λ существует зависимость следующего вида , то можно составить график зависимости .
Графики зависимости построены для многих строительных материалов. Иногда они приводятся в виде таблиц. |
По формулам (3 и 4) можно подобрать сечение стержня. Для этого поступают следующим образом:
Дата добавления: 2016-02-13; просмотров: 1698;