Нью Йорк, 26-е Мая 1888. 1 страница

НИКОЛА Т

 

 

ЭКСПЕРИМЕНТЫ С ПЕРЕМЕННЫМИ ТОКАМИ ОЧЕНЬ ВЫСОКОЙ ЧАСТОТЫ И ИХ ПРИМЕНЕНИЕ К МЕТОДАМ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ*

 

Нет предмета более увлекательного, более достойного изучения, чем природа. Понять этот великий механизм, открыть действующие силы и законы, которые им управляют — вот высшая цель человеческого разума.

Природа хранит во вселенной бесконечную энергию. Вечный приемник и передатчик этой бесконечной энергии — эфир. Признание существования эфира, а также функций, которые он выполняет — вот один из важнейших результатов современных научных исследований. Один только отказ от идеи действия на расстоянии, предположение существования среды, заполняющей собой все пространство и связующей всю грубую материю, избавило умы мыслителей от извечного сомнения, и, открыв новые горизонты — новые непредвиденные возможности, — возродило живой интерес к давно знакомы м нам явлениям. Это явилось великим шагом на пути понимания сил природы и их многообразного проявления перед нашими чувствами. Для просвещенного ученого физика это было тем же, что для варвара — понимание устройства огнестрельного оружия или парового двигателя. Явления, на которые мы привыкли смотреть как на некие чудеса, неподдающееся объяснению, теперь предстают перед нами в ином свете. Разряд индукционной катушки, свечение лампы накаливания, проявления механических сил электрических токов и магнитов — теперь уже не за пределами нашего понимания; наблюдение этих явлений теперь вместо непонимания наводит наш разум на мысли о простом механизме, и хотя о его доподлинной природе можно пока лишь строить догадки, все же мы знаем, что истина уже недолго будет сокрыта от нас, и инстинктивно чувствуем, как на нас понимание нисходит. Мы все так же восхищаемся этими красивыми явлениями, необыкновенными силами, но мы уже более не бессильны перед ними; мы можем в определенной мере объяснить их, и мы надеемся в конце концов разгадать эту тайну, которая окружает нас.

Насколько глубоко мы сможем постичь окружающий нас мирр Эта мысль волнует каждого исследователя природы. Несовершенство наших ощущений не дает нам понять невидимое строение материи, и астрономия — эта величайшая и точнейшая из естественных наук, может лишь описывать происходящее непосредственно рядом с нами; мы ничего не знаем о далеких уголках безграничной вселенной, с её бесчисленными звездами и светилами. Но сила духа может вести нас далеко за пределы восприятия наших чувств, и мы можем надеяться, что даже эти неизвестные миры — безгранично маленькие и большие — в определенной мере откроются нам. И все равно, даже если бы достигли этих знаний, пытливый ум нашел бы препятствие, возможно, непреодолимое совершенно, к истинному пониманию того, что кажется существующим, только лишь видимость чего и есть единственный и очень шаткий фундамент всей нашей философии.

Из всех форм неизмеримой, всепроникающей природной энергии, которая беспрестанно и постоянно меняется и движется, и подобно душе оживляет инертную вселенную, электричество и магнетизм являются самыми пленительными. Действие гравитации, тепла и света мы наблюдаем ежедневно, быстро привыкаем к ним, и очень скоро они перестают удивлять и восхищать нас; но электричество и магнетизм, с их загадочной взаимосвязью, с их, по- видимому, дуалистическим характером, уникальным среди всех сил природы, с их феноменами притяжений, отталкиваний и вращений, странными проявлениями таинственных агентов, возбуждают ум и стимулируют к размышлениям и исследованиям. Что есть электричество и что есть магнетизм? Эти вопросы задаются снова и снова. Над этой проблемой неустанно бились самые талантливые умы, но вопрос так пока и не получил полного ответа. Но хотя даже и сегодня мы не можем сформулировать, что же есть эти необычные силы, все же мы существенно продвинулись в направлении решения данной проблемы. Сейчас мы уверены в том, что электрическое явление и магнетизм являются составляющими эфира и, возможно, мы найдем доказательства утверждению, что действия статического электричества — это действие эфира под давлением, а явления динамического электричества и электромагнетизм — это действие эфира в движении. Но и это предположение не дает ответа на вопрос, — что же такое электричество и магнетизм.

Прежде всего, конечно же, выясним, Что такое электричество, и существует ли такая сущность, как электричество? Истолковывая электрические явления мы можем говорить об электричестве, или электрическом условии, состоянии или воздействии. Если мы говорим об электрических воздействиях, то мы должны различать два вида такого рода воздействий, противоположных по характеру и нейтрализующих друг друга, так как исследования показывают существование этих двух противоположных воздействий. И это неизбежно, т. к. в среде со свойствами эфира мы, не можем вызвать напряжение или произвести какое-либо перемещение или движение без того, чтобы не вызвать в окружающей среде равнозначное и противоположное действие. Но если мы говорим об электричестве, как о сущности, то мы должны, я полагаю, отказаться от идеи о существовании двух электричеств, поскольку существование двух таких сущностей крайне маловероятно. Возможно ли представить себе существование двух сущностей, равных друг другу по величине, похожих по свойствам, но противоположного характера, причем обе прилипают к материи, обе обладают притягиваются и полностью нейтрализуют друг друга? Подобное предположение, несмотря на то, что многие явления наводят на эту мысль, и что иногда очень удобно именно таким образом их объяснять, мало чем привлекает. Если есть такая сущность как электричество, то она может существовать только одна, и еще, возможно, ее избыток или недостаток; но более вероятно, что положительный и отрицательный признаки определяет ее состояние. Старая теория Франклина, хотя и имеющая недостатки в некоторых отношениях, с определенной точки зрения является наиболее правдоподобной. И все же, несмотря на все это, теория о существовании двух электричеств в целом принимается, т. к. она объясняет электрические явления наиболее удовлетворительно. Но теория, лучше всего объясняющая факты, совсем необязательно является верной. Искусные умы придумывают теорию, которая соответствует наблюдениям, и почти у каждого независимого мыслителя будет своя собственная точка зрения на предмет.

Моя цель не просто высказать мнение, мне хочется лучше познакомить вас, хотя бы коротко, с некоторыми результатами, которым я собираюсь описать, чтобы показать ход моих рассуждений, отправные точки, с которых я рискнул двинутьс я вперед, а также представить мнения и суждения, которые привели меня к этим результатам.

Я совершенно уверен в том, что существует сущность, которую мы привыкли называть электричеством. Вопрос в том, Что это за сущность? Или какую из всех сущностей, о существовании которых мы знаем, мы с наибольшими основаниями можем назвать электричеством? Мы знаем, что оно ведет себя, как не сжимающаяся жидкость; что в природе должно существовать его постоянное количество; что его нельзя ни создать, ни уничтожить; и что самое главное, электромагнитная теория света и все рассмотренные научные факты приводят нас к выводу о том, что явления электричества и эфира идентичны. Таким образом, сразу возникает мысль, что электричество может называться эфиром. На самом деле, эта идея в определенном смысле выдвигалась Доктором Лоджем. Его интересную работу прочли все, и многих его аргументы убедили. Высокая одаренность Доктора Лоджа и занимательная суть предмета очаровывают читателя; но когда спадает первое впечатление, читатель понимает, что ему предложили не более чем оригинальные объяснения. Я должен признаться, что не могу поверить в два электричества и еще меньше верю я в существование "двойного" эфира. Загадочность поведения эфира, когда он ведет себя как твердое тело по отношению к волнам света и тепла и как жидкость по отношению к движению тел сквозь него, конечно, наиболее понятно и удовлетворительно объясняется, по предложению сэра Уильяма Томсона, тем, что он эфир находится в движении. Тем не менее, не взирая на это, не существует оснований, которые позволили бы нам уверенно заключить, что хотя жидкость не может передавать поперечные вибрации в нескольких сот или тысяч в секунду, она не сможет передавать подобные вибрации, если они будут в диапазоне сотен миллиона миллионов в секунду. Также никто не может доказать и что есть поперечные волны эфира, испускаемые машиной переменного тока, дающей небольшое количество перемен в секунду; для таких медленных вибраций, эфир, если он находился в состоянии покоя, может вести себя как истинная жидкость.

Возвращаясь к нашему предмету, и не забывая о том, что существование двух электричеств; по меньшей мере крайне маловероятно, мы должны помнить о том, что у нас нет никаких доказательств существования электричества, и мы не можем надеяться получить их, если нет грубой материи. Таким образом, электричество не может быть названо эфиром в широком смысле этого понятия; однако, ничто не может воспрепятствовать тому, чтобы назвать электричество эфиром, соединенным с материей, или связанным эфиром. Говоря другими словами, что так называемый статический заряд молекулы — это эфир, определенным образом | соединенный с молекулой. Рассматривая предмет в этом свете, мы были бы вправе сказать, что электричество имеет отношение ко всем молекулярным [взаимо-] действиям.

Сейчас мы можем только строить догадки, что в точности есть эфир, окружающий молекулы, и чем он отличается от эфира вообще. Он не может отличаться по плотности, так как эфир несжимаем; поэтому он должен находиться под неким напряжением или в движении, и последнее наиболее вероятно. Для того, чтобы понять его функции, нужно точное представление о физическом строении материи, о чем мы, конечно же, можем составить только мысленный образ.

Но изо всех точек зрения на природу, только та, которая предполагает существование одной материи и одной силы, и совершенное единообразие во всем, является наиболее научной и с наибольшей вероятностью истинной. Бесконечно малый мир, с молекулами и их атомами, вращающимися и движущимися по орбитам, во многом подобно небесным телам, несущими с собой, а вероятно и вращающими вместе с собой, эфир, или другими словами, несущими с собой электростатические заряды, представляется мне наиболее вероятной точкой зрения, и такой, которая правдоподобным образом объясняет большинство из наблюдаемых явлений. Вращение молекул и их эфира вызывает напряжения эфира или электростатические деформации; уравнивание напряжений эфира вызывает движения эфира или электрические токи, а орбитальные движения молекул производят действия электро- и постоянного магнетизма.

Около пятнадцати лет назад Профессор Рауланд продемонстрировал самый интересный и важный факт, а именно, что движущийся статический заряд порождает эффекты электрического тока. Опуская рассмотрение точной природы механизма, который производит притяжение и отталкивание токов, и представляя себе электростатически заряженные молекулы в движении, мы исходя из этого экспериментального факта можем получить ясное представление магнетизме. Мы можем представить себе линии или трубки физически существующей силы, состоящие из рядов направленно движущихся молекул. Можно видеть, что эти линии должны быть замкнутыми, иметь тенденцию к сжатию и расширению и т. п… Это также разумно объясняет самое загадочное из всех явлений — постоянный магнетизм, и в целом обладает всеми достоинствами теории Ампера не имея при этом ее рокового недостатка, а именно, предположения о молекулярных токах. Не вдаваясь далее в этот предмет, мне бы хотелось сказать, что я рассматриваю все явления: электростатическое, ток и магнетическое, как существующие благодаря электростатическим молекулярным силам.

Вышеизложенные замечания я полагаю необходимыми для полного понимания предмета в том виде, как он представляется мне.

Из всех этих явлений самым важным для изучения является явление тока, потому что уже сегодня применение потоков в промышленных целях широко распространено и быстро растет. После создания первого практического источника тока прошло сто лет, и все это время явления, которые сопровождает течение токов, тщательно изучалось; и благодаря неустанным усилиям ученых мужей были открыты простые законы, которые управляют этими явлениями. Но эти законы хорошо работают, только когда токи носят постоянный характер. Когда же токи быстро изменяются по силе, то наблюдается совсем другие явления, часто совсем неожиданные, и становятся справедливыми совершенно другие законы, которые до сих пор еще не изучены столь полно, как того бы хотелось, хотя благодаря исследованиям преимущественно английских ученых были уже получены важные знания по данному предмету, которые дают нам возможность разбирать простые случаи, встречающиеся в ежедневной практике.

Явления, присущие меняющемуся характеру токов, существенно усиливаются, когда возрастает скорость изменения, поэтому исследование этих токов значительно облегчается при использовании специально созданного аппарата. Я ориентировался на эту и другие цели, когда создавал машины переменного тока, способные давать более двух миллионов обращений тока в минуту и, главным образом благодаря этому обстоятельству я могу представить вашему вниманию некоторые полученные к настоящему моменту результаты, которые, как я надеюсь, станут шагом в продвижении вперед по причине их прямого отношения к одной из самых важных проблем, а именно, созданию практического и эффективного источника света.

Исследование быстро переменяющихся токов очень интересно. Почти каждый эксперимент открывает что-то новое. Многие результаты, конечно же, можно предсказать, но неожиданных гораздо больше. Экспериментатор делает множество интересных наблюдений.

К примеру, мы берем кусочек металла и подносим его к магниту. Начиная с низких чередований, становящихся все чаще и чаще, мы ощущаем импульсы, сменяющие друг друга быстрее и быстрее, становясь при этом слабее и слабее, и в конце концов исчезающие. Затем мы наблюдаем постоянное притяжение; притяжение, конечно, не является непрерывным, оно только кажется нам таковым; наши чувство осязания несовершенно.

Далее, мы можем установить дугу между электродами и наблюдать, при росте чередований, как звук, присущий переменным электрическим дугам, становится все пронзительнее и пронзительнее, постепенно ослабевает и наконец прекращается. Воздушные вибрации, конечно же, продолжаются, но они очень слабы для восприятия; наше чувство слуха подводит пас.

Мы наблюдаем незначительные физиологические эффекты, быстрое нагревание железных сердечников и проводов, любопытные индукционные эффекты, интересные эффекты конденсатора, и еще более интересные световые явления при высоком напряжении индукционной катушки. Все эти эксперименты и наблюдения представляют огромный интерес для студента, но их подробное описание увело бы меня слишком далеко от главного предмета. Отчасти по этой причине, а отчасти вследствие их огромной важности, я ограничусь описанием световых явлений, производимых этими токами.

Для этой цели в экспериментах используется индукционная катушка высокого напряжения или эквивалентный аппарат для преобразования токов сравнительно низкого напряжения в токи высокого напряжения.

Если вам в достаточно мере будут интересны результаты, то я расскажу вам, как подойти к экспериментальному изучению этого предмета; если вы уверитесь в истинности аргументов, которые я выдвину, то вашей целью будет получение высоких частот и высокого напряжения; другими словами, мощных электростатических эффектов. Вы встретите множество трудностей, которые, если их полностью преодолеть, позволят добиться поистине удивительных результатов.

Первой встретится трудность получения нужных частот с помощью механического аппарата, а если они получаются иным способом, то встают препятствия другого характера. Следующей трудностью будет обеспечение необходимой изоляции, без существенного увеличения размеров аппарата, потому что требуемые потенциалы высоки, и в связи с быстротой чередования изоляция представляет определенную трудность. Так, например, присутствие газа может привести, из-за бомбардировки молекул газа и, как следствие, нагрева, к разряду даже через дюйм лучшего твердого изоляционного материала, таких как стекло, эбонит, фарфор, сургуч и т. п.; в действительности, через любой известный изоляционный материал. Главным требованием к изоляции аппарата является, таким образом, удаление любой газообразной материи.

В целом, мой опыт показывает, что вещества, обладающие наибольшей диэлектрической проницаемостью, такие как стекло, обеспечивают довольно плохую изоляцию по сравнению с веществами, которые, хотя и являются хорошими изоляторами, обладают гораздо меньшей диэлектрической проницаемостью, такие как например масло, при этом диэлектрические потери в первом без сомнения выше. Трудность с изоляцией, конечно, есть лишь в том случае, когда потенциалы чрезмерно высоки, потому что при потенциалах в несколько тысяч вольт не встречается особых трудностей при передаче на достаточное расстояние тока от машины, дающей, скажем, 20,000 перемен в секунду. Однако, такое число перемен для многих целей слишком мало, хотя и оказывается достаточным для некоторых практических применений. Эта сложность с изоляцией, к счастью, не является принципиальной помехой; она влияет главным образом на размеры аппарата, потому что когда будут использоваться очень высокие потенциалы, то дающие свет устройства будут располагаться недалеко от аппарата, а часто и очень близко к нему. Гак как воздушная бомбардировка изолированного провода зависит от эффекта конденсатора, то потерю можно уменьшить до минимума, если использовать очень хорошо заизолированные тонкие провода.

Ещё одна трудность будет с емкостью и самоиндукцией, которыми непременно обладает катушка. Если катушка большая, то есть если на ней намотан очень длинный провод, то она вообще не подойдет для очень высоких частот; а если она маленькая, то она будет хорошо работать на высоких частотах, но потенциал, при этом, будет не такой высокий, как хотелось бы. Хороший изолятор, предпочтительно с малой диэлектрической проницаемостью, даст нам двойное преимущество. Во-первых, он даст возможность создать маленькую катушку, способную выдерживать огромные разности потенциалов. А во-вторых, такая маленькая катушка, по причине её меньшей емкости и самоиндукции, будет способна на более быстрые и интенсивные вибрации. Поэтому к вопросу создания катушки или любого рода индукционного аппарата, обладающего необходимыми качествами я относился очень серьезно и работал над этим достаточно долгое время.

Исследователь, желающий повторить описываемые эксперименты с машиной переменного тока, способной давать токи нужной частоты, и индукционной катушкой, добьется успеха, если вынет первичную катушку и соберет вторичную таким образом, чтобы можно было смотреть сквозь трубку, вокруг которой намотана вторичная обмотка. Он сможет наблюдать потоки, проходящие от первичной обмотки к изоляционной трубке и по их интенсивности сможет понять, докуда можно поднимать напряжение на катушке. Без этой меры предосторожности он наверняка повредит изоляцию. Такая компоновка, помимо прочего, позволяет легко менять первичные обмотки, что в этих экспериментах весьма желательно.

Выбор типа машины, наиболее подходящего для целей опытов, должен быть предоставлен экспериментатору. Здесь представлено три различных типа машин, которые, не считая всех остальных, я в своих опытах использовал.

 

 

На рисунке 1 изображена машина, которую я использовал в экспериментах, демонстрируемых в этом Институте. Возбуждающий электромагнит состоит из кольца из кованого железа, имеющего 384 полюсных наконечника. Якорь состоит из стального диска, на котором закреплен тонкий, хорошо провареный сваркой обод из кованого железа. На обод намотано несколько слоев тонкой, хорошо отожженой железной проволоки, которая во время намотки проходит через шеллак. Провода якоря намотаны вокруг латунных штырей, обернутых шелковой нитью. Диаметр проволоки якоря в машине данного типа не должен превышать 1/4 толщины полюсных наконечников, в противном случае будет достаточно сильным локальное воздействие.

 

 

На рис. 2 представлена большая машина другого типа. Возбуждающий магнит этой машины состоит из двух одинаковых частей, которые либо окружают собой катушку возбуждения, либо же наматываются независимо. Каждая часть имеет 480 полюсных наконечника, причем наконечники одной расположены против наконечников другой. Якорь состоит из колеса, сделанного из твердой бронзы и несущего на себе проводники, которое вращается между наконечниками возбуждающего магнита. Для намотки проводников якоря я нашел самым удобным следующий способ способ. Я изготовил из твердой бронзы кольцо нужного размера. Это кольцо и обод колеса были снабжены нужным количеством штырьков, и оба закреплены на плоскости. Когда проводники якоря был намотаны, штырьки срезались, и концы проводов закреплялись двумя кольцами, которые, соответственно, привинчивались к бронзовому кольцу и ободу колеса. После этого все можно было снимать, оно составляло прочную конструкцию. Проводники в такой машине должны делаться из листовой меди, толщина которой, кончено, зависит от толщины полюсных наконечников; или же следует использовать тонкие переплетенные провода.

 

 

На рис. 3 показана машина меньшего размера, во многом похожая на предыдущую, только здесь поводники якоря и катушка возбуждения закреплена неподвижно, а только вращается болванка из кованого железа.

Если бы я пустился в дальнейшие подробности конструкции этих машин, это только излишне удлиннило бы это описание. Кроме того, они были несколько более глубоко описаны в Electrical Engineer за 18 Марта 1891 года. Однако, я полагаю, совсем неплохо было бы привлечь внимание исследователя к двум моментам. Хотя важность их и самоочевидна, исследователь, тем не менее, склонен их недооценивать. А именно, это локальное воздействие в проводниках, которого ни в коем случае нельзя допускать, и зазор, который должен быть мал. Я могу добавить, что ввиду желательности использования высоких периферийных скоростей якорь следует делать очень большого диаметра, чтобы избежать трудноосуществимых скоростей приводных ремней. Из нескольких типов этих машин, сделанных мною, с машиной, изображенной на Рис. 1, у меня возникло всех меньше проблем при создании и сборке, как впрочем и при обслуживании ее, да и в целом, это была хорошая экспериментальная машина.

При работе с индукционной катушкой при очень быстро переменяющихся токах среди отмеченных первыми световых явлений были, конечно, те, что производились разрядами высокого напряжения. Когда число чередований в секунду увеличивается, или же когда — при их высоком числе — изменяется ток через первичную обмотку, разряд постепенно менялся в своих проявлениях. Было бы трудно описать все происходящие второстепенные изменения, а так же условия, которые их вызывают, но можно выделить пять очевидных форм разряда.

Сначала можно наблюдать слабый, чувствительный разряд в виде топкой слабо окрашенной нити (рис. 4а). Этот разряд появляется всегда, когда, при большом числе перемен в секунду, ток через первичную обмотку очень мал. Несмотря на чрезвычайно малый ток, скорость изменения велика, и разность напряжений на концах вторичной обмотки поэтому значительна, так что дуга устанавливается на больших расстояниях; но приведенное в движение количество "электричества" незначительно, едва лишь достаточное, чтобы поддерживать очень тонкую нитевидную дугу. Она чрезвычайно чувствительна, и ее можно довести до состояния, когда на нее будет действовать даже одно лишь дыхание вблизи катушки, и если ее не защитить как следует от потоков воздуха, она постоянно будет извиваться. Тем не менее, в этом виде она чрезвычайно стойкая, и если выводы сблизить, скажем, на одну треть разрядного расстояния, то сдуть её можно будет только с очень большим трудом. Эта исключительная устойчивость дуги, когда она короткая, в основном обусловлена тем, что она чрезвычайно тонка, и поэтому являет потоку воздуха очень малую поверхность. А ее огромная чувствительность, когда она очень длинная, обусловлена вероятно движением частиц пыли, взвешенных в воздухе.

 

 

Когда ток через первичную обмотку возрастает, разряд становится шире и сильнее, и эффект емкости катушки становится видимым до тех пор, когда, наконец, при определенных условиях не образуется белая яркая дуга, рис. 4Ь, часто толщиной в палец и бьющая через всю катушку. Она выделяет значительное тепло и еще может характеризоваться отсутствием высокого звука, который сопровождает менее мощные разряды. Получить удар от катушки при данных условиях я бы не советовал, хотя при других условиях, [даже] когда напряжение выше, удар от катушки можно получить безо всяких последствий. Чтобы произвести разряд такого рода, число перемен в секунду не должно быть слишком велико для данной используемой катушки; а, вообще, говоря, должны соблюдаться определенные отношения между емкостью, самоиндукцией и частотой.

Важность этих элементов в цепи переменного тока сегодня хорошо известна, и при обычных условиях применимы общие правила. Но в индукционной катушке преобладают исключительные условия. Во-первых, самоиндукция до установления дуги мало важна, когда она уже предъявляет свои права, но, по-видимому, никогда не столь явно, как в обычных цепях переменного тока, потому что емкость распределена по всей катушке, и по причине того, что катушка обычно разряжается через очень большие сопротивления; отсюда токи чрезвычайно малы. Во-вторых, емкость постоянно растет в увеличением потенциала, в результате поглощения, которое проявляется в значительной степени. Благодаря этому не существует критической взаимосвязи между этими величинами, и по-видимому обычные правила неприменимы. Как только потенциал увеличивается — вследствие либо увеличившейся частоты, либо возросшего тока через первичную обмотку, количество хранимой энергии становится больше и больше, и емкость приобретает все большую и большую значимость. До определенной точки емкость полезна, но после нее становится огромной помехой. Это следует из того, что каждая катушка дает наилучший результат при определенных частоте и первичном токе. Очень большая катушка, при работе с токами очень высокой частоты, может не давать 8 искру и в 1/ дюйма. Подключая к выводам емкость, ситуацию можно улучшить, но что на самом деле катушке требуется — это более низкая частота.

При возникновении яркого разряда условия очевидно таковы, что через цепь заставляют течь самый большой ток. Этих условий можно достичь меняя в широких пределах частоту, но, при заданном первичном токе, самая высокая частота, при которой все еще может образовываться яркая дуга, определяет максимальное разрядное расстояние катушки. При ярком разряде сильных эффектов емкости незаметно; тогда скорость, с которой энергия накапливается, просто равна скорости, с которой она может сбрасывается через цепь. Такой разряд является самым суровым испытанием для катушки; если происходит пробой, то как в слишком сильно заряженной Лейденской банке. Для грубого приближения могу сказать, что с обычной катушкой, с сопротивлением, скажем, в 10,000 Ом, самая мощная дуга получается примерно при 12,000 переменах в секунду.

Когда частота возрастает за пределы этого значения, потенциал, конечно же, возрастает, но разрядное расстояние может, тем не менее, сократиться, сколь бы парадоксальным это не выглядело. По мере роста потенциала катушка все больше и больше приобретает свойства статической машины, до тех пор, пока, наконец, нашему взору не предстанет прекрасное явление — потоковый разряд, рис. 5, который может получаться во всю длину катушки. На этом этапе потоки начинают свободно исходить из всех острий и выступов. Множество потоков можно также увидеть в пространстве между первичной обмоткой и изоляционной трубкой. Если потенциал слишком высок, то они будут появляться всегда, даже при низкой частоте, и даже если первичная обмотка заизолирована дюймом сургуча, твердой резины, стекла или другого изолирующего материала. Это очень существенно ограничивает выход катушки, но позже я покажу, каким образом мне удалось в значительной степени преодолеть этот недостаток в обычной катушке.

 

 

Помимо напряжения, интенсивность потоков зависит еще от частоты; но если катушка будет очень большая, то они появятся, неважно, сколь низкие используются частоты. Например, в очень большой катушке, сопротивлением 67,000 Ом, которую я сделал некоторое время назад, они появлялись при столь низкой частоте как 100 перемен в секунду и менее, причем изоляцию вторичной обмотки составляли 3/4 дюйма эбонита. Когда они сильные, то издают звук, похожий на тот, что производит машина Гольца при зарядке, но только более мощный, и они испускают сильный запах озона. Чем ниже частота, тем больше вероятность, что они внезапно повредят катушку. При очень высоких частотах они свободно могут проходить, не вызывая никакого эффекта, кроме медленного и равномерного нагрева изоляции.

Существование этих потоков подтверждает важность создания дорогостоящей катушки, которая позволяла бы смотреть сквозь трубку, окружающую первичную обмотку, и легко заменять первичную обмотку. Или же пространство между первичной и вторичной обмотками должно было бы полностью заполнено изоляционным материалом, чтобы исключить любое присутствие воздуха. Несоблюдение этого простого правила при создании коммерческих катушек приводит к разрушению многих дорогостоящих катушек.

На этапе, когда возникает потоковый разряд, или при еще больших частотах, можно достаточно сильно сближая разрядные стержни и соответственно регулируя эффект емкости, произвести настоящие брызги из маленьких серебристо-белых искр, или же получить пучок чрезвычайно тонких серебристых нитей (Рис. 6) посреди мощной щетки — каждая искра или нить возможно соответствует одному чередованию. Это явление, получаемое при определенных условиях, является, наверное, самым красивым разрядом, а когда против него направлена струя воздуха, оно представляет необыкновенное зрелище. Брызги искр, попадающие на тело, вызывают неприятные ощущения, тогда как, если разряд просто течет, ничего подобного не ощущается, если держать в руках большие проводящие предметы для защиты от получения небольших ожогов.








Дата добавления: 2016-03-04; просмотров: 620;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.022 сек.