Частная производная, полный дифференциал ФНП. Связь дифференцируемости функции с существованием частных производных
Для функции одной вещественной переменной после изучения тем «Пределы» и «Непрерывность» (Введение в математический анализ) изучались производные и дифференциалы функции. Перейдем к рассмотрению аналогичных вопросов для функции нескольких переменных. Заметим, что если в ФНП зафиксировать все аргументы, кроме одного, то ФНП порождает функцию одного аргумента, для которой можно рассматривать приращение, дифференциал и производную. Их мы будем называть соответственно частным приращением, частным дифференциалом и частной производной. Перейдем к точным определениям.
Определение 1. Пусть задана функция переменных где - элемент евклидова пространства и соответствующие приращения аргументов , ,…, . При величины , называются частными приращениями функция . Полное приращение функции - это величина .
Например, для функции двух переменных , где - точка на плоскости и , соответствующие приращения аргументов, частными будут приращения , . При этом величина является полным приращениями функции двух переменных .
Определение 2. Частной производной функции переменных по переменной называется предел отношения частного приращения функции по этой переменной к приращению соответствующего аргумента , когда стремится к 0.
Запишем определение 2 в виде формулы или развернуто . Для функции двух переменных определение 2 запишется в виде формул , . С практической точки зрения данное определение означает, что при вычислении частной производной по одной переменной все остальные переменные фиксируются и мы рассматриваем данную функцию как функцию одной выбранной переменной. По этой переменной и берется обычная производная.
Пример 1. Для функции , где найдите частные производные и точку, в которой обе частные производные равны 0.
Решение. Вычислим частные производные , и систему запишем в виде Решением этой системы являются две точки и .
Рассмотрим теперь, как понятие дифференциала обобщается на ФНП. Функция одной переменной называется дифференцируемой, если ее приращение представляется в виде , при этом величина является главной частью приращения функции и называется ее дифференциалом. Величина является функцией от , обладает тем свойством, что , т. е. является функцией, бесконечно малой по сравнению с . Функция одной переменной дифференцируема в точке тогда и только тогда, когда имеет производную в этой точке. При этом константа и равна этой производной, т. е. для дифференциала справедлива формула .
Если рассматривается частное приращение ФНП , то меняется только один из аргументов, и это частное приращение можно рассматривать как приращение функции одной переменной, т. е. работает та же теория. Следовательно, условие дифференцируемости выполнено тогда и только тогда, когда существует частная производная , и в этом случае частный дифференциал определяется формулой .
А что же такое дифференциал ФНП?
Определение 3. Функция переменных называется дифференцируемой в точке , если ее приращение представляется в виде . При этом главная часть приращения называется дифференциалом ФНП.
Итак, дифференциалом ФНП является величина . Уточним, что мы понимаем под величиной , которую мы будем называть бесконечно малой по сравнению с приращениями аргументов . Это функция, которая обладает тем свойством, что если все приращения, кроме одного , равны 0, то справедливо равенство . По сути это означает, что = = + +…+ .
А как связаны между собой условие дифференцируемости ФНП и условия существования частных производных этой функции?
Теорема 1. Если функция переменных дифференцируема в точке , то у нее существуют частные производные по всем переменным в этой точке и при этом .
Доказательство. Равенство запишем при и в виде и раздели обе части полученного равенства на . В полученном равенстве перейдем к пределу при . В итоге мы и получим требуемой равенство . Теорема доказана.
Следствие. Дифференциал функции переменных вычисляется по формуле .
В примере 1 дифференциал функции был равен . Заметим, что этот же дифференциал в точке равен . А вот если мы его вычислим в точке с приращениями , , то дифференциал будет равен . Заметим, что , точное значение заданной функции в точке равно , а вот это же значение, приближенно вычисленное с помощью 1-го дифференциала, равно
А будет ли функция нескольких переменных дифференцируема в точке, если она имеет частные производные в этой точке. В отличии от функции одной переменной ответ на этот вопрос отрицательный. Точную формулировку взаимосвязи дает следующая теорема.
Теорема 2. Если у функции переменных в точке существуют непрерывные частные производные по всем переменным, то функция дифференцируема в этой точке.
Доказательство. Для наглядности рассмотрим функцию двух переменных и точки , , . Полное приращение функции в точке представим в виде и запишем |
в виде . В каждой скобке меняется только одна переменная, поэтому мы можем и там и там применить формулу конечных приращений Лагранжа. Суть этой формулы в том, что для непрерывно дифференцируемой функции одной переменной разность значений функции в двух точках равна значению производной в некоторой промежуточной точке, умноженному на расстояние между точками. Применяя эту формулу к каждой из скобок, получим . В силу непрерывности частных производных производная в точке и производная в точке отличаются от производных и в точке на величины и , стремящиеся к 0 при , стремящихся к 0. Но тогда и, очевидно, . Теорема доказана.
<== предыдущая лекция | | | следующая лекция ==> |
| | ОСНОВЫ ТЕОРИИ ПРОГНОЗИРОВАНИЯ |
Дата добавления: 2016-02-27; просмотров: 3723;