Непрерывный метод культивирования микроорганизмов
При непрерывном способе культивирования микроорганизмы постоянно получают приток свежей стерильной питательной среды, а из аппарата непрерывно отбирается биомасса вместе с образуемыми метаболитами (такой способ культивирования можно назвать «открытой» системой). При непрерывном культивировании микроорганизмы не должны испытывать недостатка в питательном субстрате, так как скорость его притока сбалансирована со скоростью выхода биомассы. Кроме того, культура не отравляется продуктами обмена веществ – в этом большое преимущество непрерывного способа культивирования по сравнению с периодическим, преимущество «открытой» системы по сравнению с «закрытой». Непрерывная ферментация может проходить в гомогенной системе идеального смешения, системе полного вытеснения или в системе твердожидкостного типа.
Гомогенные системы идеального смешения. В системе идеального смешения микроорганизмы растут в культуральной среде, постоянной по своему составу, и, следовательно, в каждый данный момент времени находятся в одном и том же физиологическом состоянии, то есть в состоянии установившегося динамического равновесия.
По количеству ферментеров гомогенные системы могут быть одностадийными, двухстадийными и многостадийными.
Для получения высоких концентраций биомассы используют одностадийные системы с возвратом клеток, в которых клетки, отделенные от культуральной жидкости с помощью насоса, возвращают обратно в ферментер. Возврат клеток (рециркуляция) имеет важное значение в тех процессах, в которых за время пребывания в ферментере клетки не успевают реализовать свои потенциальные возможности в отношении синтеза целевого продукта.
Многостадийные системы состоят из ряда последовательно соединенных ферментеров – батареи. Применение многостадийных систем позволяет получать культуру при любой скорости роста – от лаг-фазы до экспоненциальной и стационарной. Многостадийное культивирование применяется при получении молочной кислоты, этилового спирта.
Основным аппаратом для выращивания непрерывной гомогенной системы является ферментер идеального смешения с устройством для потока среды и слива культуры, поддерживающим постоянный уровень среды. Такой процесс называют непрерывно-проточным, обеспечивающим одинаковую концентрацию всех продуктов внутри ферментера и в вытекающей жидкости.
Непрерывно-проточное культивирование дает возможность поддерживать постоянные условия роста микроорганизмов за счет лимитирования (ограничения) какого-то одного фактора среды. В случае, когда лимитирующим рост фактором является химический состав питательной среды, процесс называют хемостатным культивированием. В хемостате (ферментере, где протекает хемостатное культивирование) скорость разбавления питательной среды является постоянной в соответствии с заданной плотностью популяции. Изменяя скорость разбавления, можно получать режимы, обеспечивающие различную скорость роста.
Другой принцип управления процессом – турбидостат. В нем подача питательной среды осуществляется по команде фотоэлектрического элемента, регистрирующего оптическую плотность культуры в ферментере. Скорость разбавления устанавливается автоматически в соответствии с заданной плотностью популяции.
Хотя теоретически взаимосвязь между концентрацией биомассы и скорость разбавления подчиняется одним и тем же закономерностям в хемостате и турбидостате, методы управления процессами различны.
Системы культивирования полного вытеснения. Открытая система полного вытеснения отличается от системы идеального смешения тем, что культура в ней не перемешивается, а представляет собой поток жидкости через трубку. Наиболее распространенным аппаратом для культивирования в данном случае является трубчатый ферментер. Он может иметь различную форму (прямую, S-образную, спиральную) и устанавливается горизонтально или вертикально. Система полного вытеснения представляет собой пространственный, проточный вариант периодической культуры. Такая культура за время посева до выгрузки проходит через все стадии периодической культуры, то есть фазы роста распределены не во времени, а в пространстве, причем каждой части ферментера в установившемся режиме соответствует определенный отрезок кривой роста. Этот способ культивирования используется для анаэробных процессов. Посев осуществляется непрерывно на входе в ферментер одновременно с подачей среды. Этот принцип может использоваться на стадии брожения при производстве пива.
Системы твердожидкостного типа. К системам твердожидкостного типа относят многофазные системы, в которых культура растет на границе разных фаз: жидкость – твердая фаза – газ. В этих системах клетки удерживаются путем прилипания к твердой основе – наполнителю и размножаются на нем, образуя пленку биомассы. Типичным примером является производство уксуса в стружечных аппаратах.
В данной системе лимитирующим фактором для аэробных микробов являются кислород и субстрат (питательные вещества). В тонких пленках каждая из прикрепленных в поверхности клеток полностью обеспечена этими веществами и способна расти и размножаться с максимальной экспоненциальной скоростью. По мере того, как клетки образуют более толстую пленку биомассы, рост их ограничивается (верхним слоям не хватает кислорода, нижним – питательных веществ).
Культивирование микроорганизмов, образующих пленку из биомассы, осуществляется в ферментере типа колонки с наполнителем. В качестве наполнителя может использоваться макроноситель (кокс, прутья, стружка, стеклянные шарики и т.д.) и микроноситель (амберлитовые смолы, частички сефадекса и т.д.). Клетки, культивируемые таким образом, называют иммобилизованными.
Вопросы для самоконтроля
1) Что понимают под дыханием (биологическим окислением)?
2) Какие процессы протекают при дыхании?
3) Анаэробиоз.
4) Облигатные аэробы.
5) Облигатные анаэробы.
6) Аэробные бактерии.
7) Факультативные анаэробы.
8) Аэротолерантные бактерии.
9) Типы размножения микроорганизмов.
10) Фазы роста культуры микроорганизмов.
11) Периодический метод культивирования микроорганизмов.
12) Непрерывный метод культивирования микроорганизмов.
13) Гомогенные системы идеального смешения.
14) Классификация гомогенных систем культивирования по числу биореакторов.
15) Непрерывно-проточное культивирование.
16) Системы культивирования полного вытеснения.
17) Системы твердожидкостного типа.
СПИСОК ЛИТЕРАТУРЫ
Основная
1. Биотехнология: учебное пособие для вузов, в 8 кн., под ред. Егорова Н.С., Самуилова В.Д. – М., 1987.
2. Бирюков, В.В. Основы промышленной биотехнологии / В.В. Бирюков. – М.: КолосС, 2004. – 296 с. – ISBN 5-9532-0231-8 («КолосС»); ISBN 5-98109-008-1 (АНО «Химия»)
3. Блинов, В.А. Общая биотехнология: курс лекций. В 2-х частях. Ч. 1 / В.А. Блинов. – Саратов, 2003.
4. Елинов, Н.П. Основы биотехнологии / Н.П. Елинов. – СПб.: Наука, 1995. – ISBN 5-02-026027-4
5. Никитина Е.В. Микробиология: учебник/ Е.В. Никитина, С.Н. Киямова, О.А. Решетник. – СПб.: ГИОРД, 2009. – 368 с. – ISBN 978-5-98879-075-4
6. Общая биотехнология в таблицах, рисунках и схемах: учебно-методическое пособие /
Дополнительная
1. Клунова, С.М. Биотехнология: учебник / С.М. Клунова, Т.А. Егорова, Е.А. Живухина. – М.: Академия, 2010. – 256 с. – ISBN 978-5-7695-6697-4
2. сост.: Блинов В.А. – Саратов: 410005, Саратов, Пугачевская, 161, офис 320, 2008. – 102 с.
3. Общая и фармацевтическая биотехнология: учебное пособие. − Самара: НОУ ВПО СМИ «РЕАВИЗ», 2012. − 118 с.
4. Основы биотехнологических процессов: Учебно-методическое пособие по биотехнологии. Часть II. Способы культивирования микроорганизмов / И.В. Тихонов. – М.: МГАВМиБ им. К.И. Скрябина, 2001. – 58 с.
5. Пшеничникова, А.Б. Основы биотехнологии: учебное пособие / А.Б. Пшеничникова. – М.: МИТХТ им. М.В. Ломоносова, 2010. – 92 c.
6. Современные проблемы и методы биотехнологии [Электронный ресурс]: электронное учебное пособие / Н.А. Войнов, Т.Г. Волова, Н. В. Зобова и др.; под науч. ред. Т.Г. Воловой. – Электрон. дан. (12 Мб). – Красноярск: ИПК СФУ, 2009.
7. Тарантул, В.З. Толковый биотехнологический словарь русско-английский: справочное издание / В.З. Тарантул. – М.: Языки славянских культур, 2009. – 936 с. – ISBN: 978-5-95-51-0342-6
8. Журналы: Биотехнология, Вестник СГАУ, Прикладная биохимия и микробиология, Журнал микробиологии, эпидемиологии, иммунологии, Фармацевтическая промышленность, Кондитерское и хлебопекарное производство, Масложировая промышленность, Молочная промышленность, Переработка молока, Мясные технологии, Сыроделие и маслоделие, Пиво и напитки, Пищевая технология.
9. http://www.biotechnolog.ru
Лекция 4
Дата добавления: 2016-02-27; просмотров: 4391;