Усилитель – каким он должен быть? 3 страница

Напряжения на участках цепи очень удобно складывать с помощью векторной диаграммы. Сумма представляет собой диагональ прямоугольника, образованного векторами UR и Uc , а угол сдвига фаз φ равен углу между векторами UR (IRC ) и URC (рис. 42, 3, б, в; 4, а, в, д ).

 

 

рис. 42 , 3

 

 

рис. 42 , 4

 

Подобным же образом можно найти общее сопротивление цепи z , если сложить построенные в определенном масштабе векторы сопротивления R и емкостного сопротивления хс для данной частоты (рис. 42, 4, б, г, е ).

Мы уже говорили, что напряжения на участках цепи пропорциональны сопротивлениям этих участков R и хс . Емкостное сопротивление конденсатора хс , как известно, с уменьшением частоты возрастает, и вместе с ним возрастает Uc (рис. 30, 10 ).

 

 

рис. 30 , 10

 

При этом меняется соотношение между UR и Uc увеличивается сдвиг фаз между общим током и напряжением (рис. 42, 4 ).

Если на пути напряжения обратной связи имеется несколько таких цепей, то вместе они могут создать на низших частотах весьма большой сдвиг фаз (вплоть до 180°) и таким образом превратить отрицательную связь в положительную. Подобные сдвиги фаз могут создаваться и другими последовательными и параллельными цепями, содержащими емкость С или индуктивность L (рис. 42, 5 ). Последняя, кстати, создает сдвиг фаз, при котором ток отстает от напряжения (рис. 42, 5, в, г ).

 

 

рис. 42 , 5

 

Дополнительные изменяющиеся с частотой сдвиги фаз, возникающие в RC ‑, RL ‑ и LC ‑цепях, ограничивают допустимую глубину отрицательной обратной связи (рис. 43).

 

 

Рис. 43. С изменением частоты меняются фазовые сдвиги в сложных цепях (RС‑цепочки, трансформатор и др.), и из‑за этого отрицательная связь может превратиться в положительную. Сильная положительная обратная связь может привести к самовозбуждению.

 

Как правило, в усилителях НЧ глубина обратной связи составляет 5–15 дб на каскад. Такая величина позволяет в несколько раз снизить нелинейные искажения, значительно уменьшить выходное сопротивление оконечного каскада, осуществить заметную коррекцию частотной характеристики. Конкретные схемы отрицательной обратной связи вы найдете в усилителях, описанных в этой и двух последующих главах.

 

 

Музыка в чемодане

Есть люди, которые предъявляют к звуковоспроизводящей аппаратуре обязательное требование: она должна быть легкой и удобной в переноске. Подобный подход к делу зачастую можно считать вполне правильным. Для многих (особенно для тех, кого годы еще не превратили в неисправимых домоседов) главное достоинство радиолы или магнитофона действительно состоит в том, что их можно взять под мышку и принести на школьный вечер или захватить в гости к товарищу.

К сожалению, в небольших переносных аппаратах трудно добиться высокой верности воспроизведения звука. Но трудно – это еще не значит невозможно. Разумно используя все имеющиеся в нашем арсенале средства, можно и нужно стремиться к тому, чтобы качество звучания переносной аппаратуры было достаточно высоким, чтобы музыка в чемодане была настоящей музыкой.

Сейчас мы познакомимся с несколькими конструкциями и схемами простых переносных радиограммофонов. Основные узлы каждого из них – электропроигрыватель (мотор, диск, звукосниматель), усилитель низкой частоты с громкоговорителями. При желании к этому комплекту можно легко добавить простейший приемник (рис. 68, 9 ) и таким образом превратить радиограммофон в переносную радиолу.

В радиограммофоне можно использовать любой современный мотор со звукоснимателем. Во всех наших конструкциях используется трехскоростное проигрывающее устройство ЭПУ‑5 со звукоснимателем и двигателем ЭДГ‑1 (рис. 20, 5 ).

 

 

рис. 20 , 5

 

Этот двигатель рассчитан только на напряжение 220 в, а к сети 127 в он подключается через повышающий автотрансформатор. Для этой цели «по совместительству» используется силовой трансформатор (Тр2 , рис. 44); в блоке питания усилителя двигатель всегда подключен к отводу сетевой обмотки «220 в». В некоторых проигрывателях установлен двигатель ЭДГ‑2. Он рассчитан на напряжение 110 в, и в сеть с напряжением 220 в его нужно включать через понижающий трансформатор. Для этого опять‑таки используется сетевая обмотка силового трансформатора (рис. 46).

В цепи двигателя имеются три выключателя (рис. 20, 5, е ). Первый из них, Вк1 – это общий выключатель радиограммофона, через который одновременно подается питание на силовой трансформатор и на двигатель. Второй выключатель, Вк2 , замыкает цепь тогда, когда звукосниматель снят со своей подставки. Выключатель Вк3 – это автомат. Он размыкает цепь, когда кончится пластинка, то есть когда звукосниматель сойдет с последней звуковой дорожки.

Последовательное соединение выключателей (или других подобных элементов) в автоматике называют схемой «и» – цепь оказывается замкнутой, если замкнуты контакты и первого, и второго, и третьего выключателей. Вот почему двигатель радиограммофона вращается только в том случае, если одновременно замкнуты контакты всех трех наших выключателей: Вк1, Вк2, Вк3 . Во многих проигрывателях роль Вк2 и Вк3 выполняет один выключатель. Аналогично Вк2, он замыкает цепь лишь после того, как звукосниматель отведен в начальное положение. Этот же выключатель, аналогично Вк3 , размыкает цепь, когда звукосниматель доходит до конца пластинки.

Мы рассмотрим четыре конструкции радиограммофонов и четыре схемы усилителей НЧ для них. При желании эти схемы и конструкции можно комбинировать самым различным образом в зависимости от имеющихся деталей, возможностей выполнять столярные и слесарные работы и, конечно, в зависимости от собственного вкуса.

Главное достоинство первой конструкции радиограммофона (рис. 47, 2, а ) – компактность. Но она покупается довольно дорогой ценой: частотная характеристика зажатого со всех сторон громкоговорителя, мягко говоря, весьма далека от идеальной. Громкоговоритель можно крепить к верхней панели, либо к боковым стенкам (рис. 47, 2, б ).

Для второй конструкции самыми удобными оказываются громкоговорители с эллиптическим диффузором, в частности 1ГД‑9. На боковых стенках можно даже установить два‑три эллиптических громкоговорителя. Это заметно повышает громкость, немного улучшает качества звучания.

Несколько лучше обстоит дело в третьей конструкции (рис. 47, 2, в ), которая напоминает промышленный радиограммофон РГ‑3 («Юбилейный»). Здесь в качестве акустического экрана используется съемная крышка ящика. Предполагается, что во время работы эта крышка будет висеть на стене, лучше всего в углу комнаты. Вполне возможно объединить обе конструкции (рис. 47, 2, а, б и рис. 47, 2, в ), используя два‑три громкоговорителя. Нужно заметить, что в радиограммофоне РГ‑3 приняты эффективные меры для улучшения частотной характеристики. Громкоговоритель установлен в закрытой камере с двумя отверстиями: со стороны диффузора и с противоположной стороны.

Несколько увеличив размеры радиограммофона, можно значительно улучшить качество звучания. Именно так и сделано в четвертой конструкции (рис. 47, 2, г ). Ее основа – два простеньких акустических агрегата, которые при переноске складываются и образуют упаковочный ящик (чемодан). Внутри него размещается совершенно самостоятельный блок – усилитель с проигрывателем. Такая конструкция позволяет применить два и даже четыре громкоговорителя. В дальнейшем от нее легко перейти к стереофоническому звучанию.

Несколько слов о конструкции самого усилителя. Все его детали, включая детали блока питания, можно разместить на общем шасси (рис. 47, 1, а ). В этом случае высота шасси определится силовым трансформатором, а длина – общей компоновкой. Проще всего изготовить угловое шасси; на нем удобно крепить переменные сопротивления. Четырьмя болтами шасси прикрепляется к верхней панели радиограммофона, которую можно изготовить из толстой (5–6 мм) фанеры.

Чтобы облегчить размещение электронной части радиограммофона в ящике, целесообразно отделить блок питания от усилителя и собрать их на отдельных шасси, соединенных тремя или четырьмя проводами (рис. 47, 1, а ). Подобное конструктивное решение имеет еще одно достоинство: от входных цепей усилителя отдаляется такой сильный источник фона, как силовой трансформатор. Из этих же соображений шасси усилителя нужно располагать так, чтобы входные цепи находились дальше от двигателя и ближе к звукоснимателю.

Иногда удобно отделить от самого усилителя весь блок регулировок: переменные сопротивления регулировки громкости и тембра. Не забудьте, что эти детали, особенно регулятор громкости, страшно «боятся» наводок, так как включены в цепи с низким уровнем сигнала. Поэтому переменные сопротивления должны соединяться с усилителем с помощью экранированного провода. Необходимо также тщательно экранировать провод, идущий от звукоснимателя на вход усилителя (рис. 34).

Если вы не достанете провод в экранированном чулке, то его можно сделать самому (рис. 47, 4, а, б ). Для этого поверх изоляции обычного монтажного провода достаточно намотать слой любого тонкого провода, например в эмалевой изоляции (ПЭ). Этот слой и будет играть роль экрана. Его необходимо заземлить с обоих концов, а если экранированная цепь имеет большую длину, то и в середине. Для размещения и соединения деталей усилителя очень удобно пользоваться монтажными колодками и пластинами (платами). Их также нетрудно изготовить своими силами из трехмиллиметровой фанеры и обычной белой жести.

Рис. 47, 3 иллюстрирует порядок изготовления простейшей монтажной платы. В хорошо обработанной фанерной пластинке прокалывают шилом или ножницами отверстия диаметром 1,5–2,5 мм (рис. 47, 3, а ). Затем нарезают из жести лепестки и в них делают надрез (рис. 47, 3, б ) или пробивают гвоздем небольшие дырочки, куда могли бы пройти монтажные провода. Кверху лепестки постепенно расширяются, а ширина их средней части должна быть примерно такой же, как и отверстия в фанерной пластинке. Лепестки тонким концом вставляют в эти отверстия и с силой втягивают плоскогубцами.

Нужно, чтобы жестяный лепесток врезался в фанеру и закрепился в ней (рис. 47, 3, в ). Затем широкую часть лепестка нужно развернуть (рис. 47, 3, г ), а узкую подрезать. Чтобы лучше закрепить лепесток, можно сделать возле него еще одно отверстие и туда втянуть тонкий конец лепестка (рис. 47, 3, д ).

Целесообразно изготовить отдельную монтажную плату для блока питания (рис. 47, 5, а ). На ней удобно будет произвести распайку выводов силового трансформатора Трс и разместить детали выпрямителя, например полупроводниковые диоды. На этой плате можно установить также переключатель напряжения, который проще всего сделать в виде трех либо четырех держателей для установки предохранителя (рис. 47, 5, а, в ). Не забудьте, что нужно обеспечить свободный доступ к этому переключателю – ведь не очень удобно для смены предохранителя или переключения сетевого напряжения вынимать весь радиограммофон из ящика. По‑видимому, колодку с предохранителями удобнее всего закрепить под самой верхней панелью и сверху закрывать небольшой пластмассовой или фанерной крышечкой (рис. 47, 5, б ).

Предлагаемые конструкции можно рассматривать лишь как общие рекомендации. Перед тем как приступить к постройке радиограммофона, нужно, исходя из выбранного варианта конструкции и имеющихся в вашем распоряжении деталей, составить чертеж, где были бы учтены размеры основных узлов радиограммофона. Перед этим полезно попробовать (разумеется, на бумаге) несколько различных вариантов компоновки деталей и отобрать лучший из них.

Теперь о схемах (рис. 44, 46, 51, 61). С первой из них мы уже знакомы (рис. 30, 30 ), и поэтому о ее построении, о назначении отдельных деталей не имеет смысла говорить. Для питания усилителя используется кенотронный выпрямитель с силовым трансформатором от приемника «Рекорд‑61».

 

 

 

Рис. 46. Одноламповый усилитель.

 

 

Рис. 47 , 1

 

 

Рис. 47 , 2

 

 

Рис. 47 , 3

 

Рис. 47 , 4

 

Рис. 47 , 5

Рис. 47. Конструкция радиограммофона.

 

Сейчас, пожалуй, стоит отвлечься от наших первых усилительных схем и поговорить более подробно о выпрямителях. Это нужно, чтобы раз и навсегда покончить с проблемой питания, чтобы она в дальнейшем не отвлекала нас, когда мы будем знакомиться с новыми усилителями.

Режим работы усилителя определяется анодным напряжением (табл. 12 и 13), а оно, в свою очередь, зависит от выбранного силового трансформатора. На первых двух схемах указаны режимы ламп для случая, когда в качестве Тр 2 используется силовой трансформатор от приемника «Рекорд‑61». Этот трансформатор дает выпрямленное напряжение около 230 в, что позволяет получить выходную мощность до 3–4 вт.

 

 

 

 

* Для двухтактных каскадов (отмечены звездочкой) значения Iа0 ,Iэ0 и Rвых указаны для всего каскада, то есть для двух ламп, а значения всех напряжений и Rа. опт – для одной лампы.

 

Нужно сказать, что такая мощность не всегда нужна. Так, например, если для радиограммофона выбрана первая конструкция (рис. 47, 2, а ) и используется один громкоговоритель 1ГД‑9, то вполне можно ограничиться выходной мощностью до 1,5 вт. Для этого удобнее всего снизить анодное напряжение, применив трехзвенный фильтр (рис. 48, 2 ).

Обратите внимание, что напряжение на анод выходной лампы (рис. 46) подается с конденсатора C7 (аналогично схеме рис. 30, 18 ). Это сделано для того, чтобы анодный ток лампы не проходил через R8 и на этом сопротивлении не терялась слишком большая часть выпрямленного напряжения. Такая хитрость позволяет повысить напряжение на анодах, но несколько увеличивает уровень фона – на анод выходной лампы поступает плохо отфильтрованное напряжение.

В том случае, когда от усилителя требуется повышенная выходная мощность (лампа 6П14П может отдать 4–5 вт), анодное и экранное напряжения нужно повысить. Для этого выбирают другой силовой трансформатор и даже применяют другую схему выпрямителя.

Распространенные схемы анодных выпрямителей приведены на рис. 48, 1 , а в табл. 14 – данные ряда силовых трансформаторов. В предпоследней колонке этой таблицы указано эффективное значение переменного напряжения (UII ) на повышающей обмотке трансформатора (для двухполупериодных – на половине обмотки). Можно считать, что такую же величину будет иметь и выпрямленное напряжение, хотя при достаточно большой емкости первого конденсатора фильтра Сф1 выпрямленное напряжение может быть на 15–25 % выше, чем UII .

 

 

Необходимо учитывать и то, что некоторая часть выпрямленного напряжения теряется в фильтре. Грубо говоря, напряжение U'в на выходе выпрямителя (на входе фильтра) должно быть примерно на 10 % больше, чем требуется для усилителя. Для переносных радиограммофонов имеет смысл применять только первые четыре трансформатора. Остальные пригодны для установок большей мощности, в том числе для радиоузлов.

Все схемы выпрямителей (рис. 48, 1 ) можно разделить на три группы: однополупериодные (а, б, в ,), двухполупериодные (г, е ) и мостовые (д ). Первые работают через такт, то есть используют только один из двух полупериодов переменного напряжения (рис. 30, 16 ) и дают ток с частотой пульсаций 50 гц. По возможности, следует отдавать предпочтение двухполупериодным и мостовым схемам (рис. 30, 17 ), где используются оба полупериода и частота пульсаций составляет уже 100 гц. Это облегчает фильтрацию пульсирующего напряжения: чем выше частота, тем меньше может быть емкость конденсаторов фильтра Сф1, Сф2, Сф3 , замыкающих накоротко переменную составляющую этого напряжения. Кроме того, однополупериодная схема при прочих равных условиях дает более низкое выпрямленное напряжение.

 

 

рис. 30 , 16

 

 

рис. 30 , 17

 

Для двухполупериодного выпрямителя нужен трансформатор с двумя повышающими обмотками IIа, IIб , точнее, с одной обмоткой, имеющей удвоенное число витков и вывод от средней точки. Для выполнения мостовой схемы нужна одна повышающая обмотка, но зато необходимо иметь четыре вентиля. В последние годы мостовая схема применяется наиболее широко, так как появилась возможность использовать в выпрямителе плоскостные полупроводниковые диоды (табл. 15), а также типовые селеновые вентили (ABC), собранные для мостовой схемы и спрессованные в пластмассу [9].

 

 

При выборе схем и деталей выпрямителя можно вести себя довольно смело. Следует учитывать лишь два главных фактора: постоянное напряжение Uв , которое нужно подвести к усилителю, и общий анодно‑экранный ток Iв , который он потребляет. Величина тока лимитируется самим вентилем, а также диаметром провода повышающей обмотки: чем толще провод, тем больший ток можно через него пропустить, не опасаясь перегрева. Ориентировочное значение допустимого тока Iв приводится в таблице 11. В двухполупериодных и мостовых схемах можно получить Iв в два раза больший, чем это указано для одного вентиля (табл. 15, рис. 80).

Наиболее опасно для вентиля обратное напряжение U обр ., которое действует в тот момент, когда вентиль не пропускает тока. Это напряжение представляет собой сумму постоянного Uв и амплитуды переменного UII ампл. напряжений. Поэтому вентиль выбирают с большим запасом – он должен выдерживать обратное напряжение, которое значительно превышает выпрямленное. В однополупериодных и двухполупериодных схемах допустимая для данного вентиля величина Uобр (табл. 15, рис. 80) должна быть в три раза больше, а в мостовых в полтора раза больше, чем выпрямленное напряжение. И в тех случаях, когда один вентиль может не выдержать подводимого напряжения, соединяют последовательно два вентиля, например два полупроводниковых диода. При этом вентили (диоды) шунтируют одинаковыми сопротивлениями, чтобы напряжение всегда распределялось между ними поровну (рис. 48, 1, а, г ).

В заключение поясним одну особенность кенотронных выпрямителей. Для накала кенотронов обычно используют отдельную обмотку (IV) силового трансформатора, тщательно изолированную от других обмоток и от корпуса (рис. 48, 1, б, г ). Необходимость тщательной изоляции связана с тем, что на катоде действует «плюс» довольно большого напряжения (200–300 в)у и нельзя допустить, чтобы произошел пробой (короткое замыкание) катода через нить накала и накальную обмотку на корпус. В некоторых лампах (5Ц4С) катод соединен с нитью накала внутри баллона, и здесь заземлить нить накала это значит, заземлить (замкнуть накоротко) «плюсы» выпрямителя. В то же время есть лампы (6Ц5С, 6Ц4П) с хорошей изоляцией между катодом и подогревателем. При анодном напряжении до 400 в накал этих ламп можно питать от общей накальной обмотки, которая всегда заземлена (рис. 48, 1, в ).

 

 

Рис. 48 , 1

 

На рис. 48, 2 приведены схемы фильтров выпрямителя. Наилучшую фильтрацию выпрямленного напряжения дают фильтры с дросселем Дрф (рис. 48, 2, в ). Дроссель оказывает довольно большое сопротивление переменной составляющей выпрямленного тока и почти беспрепятственно пропускает постоянную составляющую. Если общий выпрямленный ток Iв не превышает 40–60 ма, то дроссель можно намотать проводом ПЭ‑0,16 (0,2) и разместить на сердечнике сечением 3–5 см2. При токе 80–120 ма сечение сердечника и диаметр провода целесообразно увеличить примерно в полтора раза.

 

Рис. 48 , 2

 

Намотка во всех случаях ведется внавал, до полного заполнения каркаса. Сердечник собирается встык с использованием тонкой бумажной прокладки (рис. 49). Вместо дросселя любители иногда включают выходные трансформаторы, точнее, их первичную обмотку.

 

 

Рис. 49. По данным выходного каскада усилителя и громкоговорителя можно рассчитать выходной трансформатор, проверить пригодность готового и, в случае необходимости, подогнать его, изменив данные вторичной обмотки.

 

В усилителях, где одно из главных требований – высокое качество звучания, не стоит экономить на фильтре выпрямителя. Не забудьте, что заметный фон резко ухудшает важнейшую характеристику воспроизводимого звука – динамический диапазон громкости, не говоря уже о том, что непрерывное монотонное гудение просто‑напросто действует на нервы. При конструировании и налаживании усилителей следует стремиться к тому, чтобы на слух трудно было установить, включен усилитель или нет (при введенном регуляторе громкости).

Только в этом случае можно будет сказать, что усилитель работает без фона. Снижению фона уделяют особое внимание в усилителях, хорошо воспроизводящих низшие частоты.

Источником фона могут быть также накальные цепи ламп. Нить накала выбрасывает электроны, часть которых попадает на катод и создает в его цепи переменный ток с частотой 50 гц.

В итоге переменное напряжение накала попадает в катодную цепь лампы и таким образом действует между сеткой и катодом. Одна из мер борьбы с этим источником фона – обязательное заземление одного провода накальной цепи (рис. 48, 3, а ). Еще лучшие результаты может дать заземление средней точки накальной обмотки (рис. 48, 3, б ). Если обмотка не имеет средней точки, то ее можно создать искусственно (рис. 48, 3, в', в ") с помощью низкоомного потенциометра либо двух постоянных сопротивлений по 30–50 ом. Весьма эффективная мера – питание нити накала выпрямленным напряжением (рис. 48, 3, г', г" ). Этот довольно дорогой метод снижения фона имеет смысл применять только для питания нити накала первого каскада усилителя с очень высокой чувствительностью (несколько милливольт). Напряжение накала ламп подгоняют с помощью сопротивления Rф. н . Желательно для накального выпрямителя использовать отдельную обмотку с повышенным напряжением 10–20 в. Чтобы снизить напряжение накала до 6,3 в, нужно увеличить Rф. н . При этом не забудьте подобрать конденсатор Сф. н с рабочим напряжением в 15–30 в.

Кое‑что может дать положительное смещение на нить накала первой лампы (рис. 48, 3, д ). В этом случае на корпусе, а значит, и на управляющей сетке появляется значительный «минус» относительно нити накала и лампа оказывается запертой для накального переменного напряжения, которое «нахально лезет» на сетку.

 

Рис. 48 , 3

 

В заключение еще раз напоминаем, что одна из главных причин фона – это наводки в сеточных цепях ламп первого каскада. Поэтому все эти цепи должны быть самым тщательным образом экранированы, а экраны соединены с корпусом усилителя (рис. 34).

После того как мы выяснили, чем и как нужно «кормить» усилитель, вернемся к рассмотрению практических схем радиограммофонов.

В схеме рис. 44 предполагается использование выходного трансформатора от радиолы «Рекорд‑61». Он рассчитан на подключение двух громкоговорителей 1ГД‑9 к лампе 6П14П. Но поскольку оптимальное сопротивление нагрузки для этой лампы примерно такое же, как и для 6П1П (рис. 80), мы применили трансформатор без переделки. Вообще же при выборе готового выходного трансформатора (табл. 16, рис. 48, 5 ) нужно учитывать три фактора. Во‑первых, расчетная мощность трансформатора не должна быть меньше выходной мощности усилителя. Во‑вторых, первичная обмотка должна иметь достаточную индуктивность. И, наконец, третье: необходим такой коэффициент трансформации, чтобы сопротивление нагрузки, пересчитанное в первичную обмотку, соответствовало оптимальному сопротивлению, рекомендованному для данной лампы.

 

Рис. 48 , 5

 

Иногда нужно изменить коэффициент трансформации, и для этого проще всего увеличить или уменьшить число витков вторичной обмотки. При расчете данных новой обмотки достаточно знать (рис. 49) оптимальное сопротивление нагрузки Rа. опт , сопротивление звуковой катушки Rзв и данные трансформатора до переделки. На рис. 50 показана зависимость выходной мощности и Кн.и от сопротивления нагрузки, а значит, и от коэффициента трансформации n . Обычно изменение коэффициента трансформации n на несколько процентов не слишком сильно нарушает работу выходного каскада. В то же время изменение n более чем на 10–15 % может привести к заметному снижению мощности и к росту нелинейных искажений.

 

 

Рис. 50. Меняя сопротивление во вторичной обмотке выходного трансформатора (эквивалент громкоговорителя) и добиваясь максимальной мощности при минимальных искажениях, можно определить оптимальное сопротивление анодной нагрузки.

 

Сборка сердечника выходного трансформатора производится встык, причем с использованием тонкой (0,1–0,15 мм) бумажной прокладки (рис. 49). Эта мера нужна для того, чтобы не допустить магнитного насыщения стального сердечника.

Постоянный ток Ia0 выходной лампы, проходя по первичной обмотке выходного трансформатора, сильно намагничивает сердечник и может довести его до такого состояния, когда все элементарные магнитики повернутся вдоль магнитного поля. Это и есть магнитное насыщение – тот «потолок», выше которого магнитное поле подняться не может. Для переменной составляющей анодного тока насыщение сердечника – это самая настоящая катастрофа. Ведь переменная составляющая I а~ должна навести ток во вторичной обмотке. Это может произойти только при изменении общего для обеих обмоток магнитного поля – такова сущность индукции (наведения) переменного тока из одной обмотки трансформатора в другую. Ну, а как может изменяться магнитное поле насыщенного сердечника? Оно может легко уменьшаться и почти не может увеличиваться – насыщение! Поэтому форма тока во вторичной обмотке окажется сильно искаженной – в те полупериоды, когда сердечник попадает в область насыщения, ток значительно меньше, чем мог бы быть.








Дата добавления: 2016-02-24; просмотров: 2832;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.051 сек.