УЧИТЕСЬ ДЕЛАТЬ ВЫВОДЫ

Первые несколько выводов мы, как говорится, можем «взять голыми руками», бегло взглянув на рис. 56 и 58. Выводы эти касаются параметров самого транзистора – он обладает очень небольшим входным сопротивлением, очень большим выходным сопротивлением и не дает усиления по току.

Другие выводы – они касаются режима транзисторного усилителя – будут сделаны на основании анализа входной и выходной характеристик, причем мы будем наблюдать за усилителем в динамическом режиме, то есть когда на его вход подан усиливаемый сигнал, а в коллекторную цепь включена нагрузка.

Чтобы легче представить себе то, что происходит в этом случае с транзистором, мы воспользуемся совмещенными графиками, пример построения которых понятен из рис. 62.

 

 

Рис. 62. Если известно, как меняется входное напряжение, то, пользуясь входной характеристикой, можно построить график входного (эмиттерного) тока.

 

В левой части рис. 62 помещена входная характеристика транзистора, которая показывает, как меняется ток Iэ при изменении управляющего напряжения Uэб . Само же напряжение Uэб непрерывно меняется, так как ко входу усилителя подведен сигнал Uсиг . Кроме того, на входе действует еще и напряжение смещения Uсм . Суммируясь, Uсм и сигнал дают меняющееся напряжение Uэб . График этого напряжения (рис. 62–Б ) мы «положили набок» и совместили его с входной характеристикой. «Совместили» – это значит, что деления на оси напряжения Uэб графика Б совпадают с делениями на оси напряжения Uэб графика А . Иными словами, одинаковые значения напряжений –100 мв, 200 мв, 300 мв и т. д. – лежат строго друг против друга, то есть совмещены.

Обратите внимание, что ось времени, на графике Б размечена не в «законных» единицах времени – не в сек, мсек, мксек и т. д. На этой оси маленькими буквами а, б, в отмечены лишь три наиболее интересных момента. Так, например, от момента 0 до момента а входного сигнала нет, и на базе действует только одно смещение. Моменты б и в соответствуют положительной и отрицательной амплитудам усиливаемого сигнала. Суммируясь с Uсм или вычитаясь из него, эти амплитуды дают наибольшее Uэб‑макс или наименьшее Uэб‑мин напряжение на базе.

Попутно еще раз напоминаем, что наибольшим напряжением на базе мы будем считать наибольший «минус» на ней, именно тот самый «минус», который отпирает эмиттерный рn ‑переход и увеличивает эмиттерный ток. «Минус» напряжения Uэб откладывается по оси напряжений вправо от нуля. Это непривычно, но зато удобно. Конечно, более привычным было бы откладывать вправо от нуля не «минус», а «плюс». Но для этого уже пришлось бы вести речь не о «минусе» на базе, а о «плюсе» на эмиттере. И хотя по существу здесь нет никакой разницы (если на базе – 2 в относительно эмиттера, то на эмиттере + 2 в относительно базы; человек, живущий на первом этаже шестиэтажного дома, может сказать, что над ним пять этажей, а тот, кто живет на последнем этаже, может сказать, что под ним пять этажей), однако в интересах будущего лучше приучиться говорить о напряжении на базе относительно эмиттера, а не о напряжении на эмиттере относительно базы. Поэтому‑то мы а откладываем вправо от нуля отрицательное напряжение – Uэб , то есть «минус» на базе.

Итак, мы совместили с входной характеристикой транзистора график, показывающий, как с течением времени меняется входное напряжение Uэб . Теперь можно быстро узнать, каким будет эмиттерный ток в тот или иной момент времени. Для этого достаточно определить Uэб , затем провести вспомогательную прямую линию на входную характеристику и, наконец, по входной характеристике определить, каким будет ток при данном Uэб . Так, например, легко находим, что в момент а на базе действует напряжение Uэб = 200 мв и что этому напряжению соответствует ток Iэ = 6 ма. Аналогично для момента б находим Uэб = 250 мв и Iэ = 10 ма, а для момента в определяем Uэб = 150 мв и Iэ = 2 ма.

Определяя ток для разных моментов времени, можно построить еще один важный график – зависимость входного тока Iэ от времени t . Для удобства этот третий график (рис. 62–В ) располагаем справа от входной характеристики и ось тока Iэ размечаем в том же масштабе, что и ось тока Iэ на входной характеристике. Это позволит упростить само построение третьего графика, так как необходимую величину тока можно будет откладывать на нем, протянув вспомогательную прямую линию от входной характеристики.

Как видите, совмещенные графики для входной цепи строятся очень просто и позволяют наглядно представить себе, что произойдет с эмиттерным током (не забывайте – от него зависит и коллекторный ток!) при тех или иных изменениях смещения или самого входного сигнала.

Несколько сложней обстоит дело с построением совмещенных графиков, иллюстрирующих работу коллекторной цепи (рис. 63).

 

 

Рис. 63. Если известно, как меняется входное напряжение, и известно сопротивление нагрузки, то, пользуясь выходной характеристикой, можно построить график коллекторного тока и напряжения на коллекторе (на нагрузке).

 

Трудность состоит в том, что просто некуда приложить «самый главный» график, определяющий все поведение транзистора, в том числе и поведение коллекторной цепи. Речь идет о графике, который показывал бы, как меняется управляющее напряжение Uэб (листок Б ). По вертикальной и горизонтальной осям выходной характеристики (рис. 63–А ) откладываются соответственно коллекторный ток и коллекторное напряжение, которые в очень сильной степени зависят от Uэб . А изменения самого управляющего напряжения Uэб отражены лишь в том, что построена не одна, а целое семейство выходных характеристик и при изменении Uэб следует переходить с одной из них на другую (стр. 165). Поэтому есть лишь один способ хоть как‑нибудь отметить на выходной характеристике то, что происходит на входе транзистора. Нужно помечать тех «членов семейства», помечать те отдельные статические характеристики, которые соответствуют изменяющемуся входному напряжению.

Мы в дальнейшем будем помечать лишь три такие статические характеристики: одну – соответствующую наибольшему напряжению на базе Uэб‑макс , другую – соответствующую наименьшему напряжению на базе Uэб‑мин и третью – соответствующую напряжению постоянного смещения Uсм . По этим трем характеристикам можно определить наибольший коллекторный ток Iк‑макс , наименьший коллекторный ток Iк‑мин и коллекторный ток покоя Iк‑п – постоянный ток в коллекторной цепи, когда сигнала нет. Попутно отметим, что этот ток очень часто определяет и энергию, Потребляемую от источника питания, так как он говорит о том, что потребляется от этого источника не в самом трудном случае (Iк‑макс , момент б ), не в самом легком случае (Iк‑мин , момент в ), а в среднем за длительное время.

И еще одно попутное замечание: токи эмиттера Iэ‑п и базы Iб‑п при отсутствии сигнала также называют токами покоя. Подсчитав Iк для разных моментов времени, можно легко построить график изменения этого тока с течением времени (листок В ). Для простоты построения график этот удобно расположить слева или справа от выходной характеристики, причем расположить так, чтобы оси Iк оказались совмещенными.

Отметив три статические характеристики, соответствующие наибольшему, наименьшему и среднему напряжению на входе транзистора, можно, пользуясь линией нагрузки, определить, как будет изменяться и напряжение Uбк на коллекторе (точнее – между коллектором и базой). Для этого достаточно опустить на горизонтальную ось вспомогательные линии от точек пересечения линии нагрузки с соответствующими статическими характеристиками. Определив границы изменения Uбк , можно очень просто построить график, показывающий, как меняется это напряжение с течением времени (листок Г ).

Мы все время считаем, что продукция усилителя – это переменная составляющая напряжения на нагрузке Uн~ . Но можно легко доказать, что переменное напряжение на нагрузке меняется в тех же пределах, что и напряжение на самом коллекторе. Действительно, нагрузка и коллекторная цепь самого транзистора образуют делитель, к которому приложено напряжение Ек коллекторной батареи. В динамическом режиме сопротивление коллекторной цепи меняется, а сопротивление нагрузки, естественно, остается неизменным. Поэтому подводимое напряжение Ек непрерывно перераспределяется между этими двумя участками делителя, причем сумма напряжений Uн + Uбк всегда остается неизменной и равной Ек . Это значит, что если напряжение на нагрузке увеличится, например, на 2 в, то на те же 2 в уменьшится напряжение на коллекторе, и наоборот: на сколько увеличится Uбк , на столько же уменьшится и Uн . Иными словами, в динамическом режиме напряжение на нагрузке меняется на ту же величину, что и напряжение на коллекторе, и можно с равным успехом называть выходным сигналом транзисторного усилителя и переменную составляющую Uн~ , и переменную составляющую Uбк~ . А поэтому по построенному нами графику изменения Uбк можно в полной мере судить о выходном напряжении усилителя. Для удобства построения этот график «положен набок» и его ось Uбк совпадает с такой же осью выходной характеристики.

Вот мы подготовились к тому, чтобы с помощью входной и выходной характеристик попытаться оценить влияние тех или иных факторов на режим транзисторного усилителя. Выводы, которые сейчас будут сделаны, мы пронумеруем, с тем чтобы в дальнейшем, при рассмотрении практических схем, проще было на них ссылаться. В соответствии с «порядковым номером» того или иного вывода пронумерован и поясняющий листок на рис. 64.

 

 

Рис. 64. Входные и выходные характеристики позволяют сделать ряд полезных практических выводов о работе транзисторного усилителя.

 

Вывод первый. На работу усилителя в сильнейшей степени влияет постоянное отрицательное смещение Uсм , проще говоря – «минус» на базе. При слишком малом смещении входное напряжение Uэб попадает в область загибов входной характеристики, а то и в область положительного напряжения на базе. А если на базе появляется «плюс», транзистор просто запирается, то есть работает с отсечкой.

Слишком большое смещение может привести к другой крайности – к чрезмерному эмиттерному току и, значит, к перегреву транзистора и выходу его из строя. Не думайте только, что этот перегрев из тех, которые можно обнаружить на ощупь, а если надо, то и перетерпеть. Даже ненадолго превысив допустимый эмиттерный (или коллекторный) ток, вы выведете транзистор из строя настолько быстро и аккуратно, что даже заметить этого не успеете.

По характеристике можно определить режим, при котором на базе действует одно только смещение. Сама точка на характеристике, соответствующая этому режиму, получила название рабочей точки. Так, например, на характеристике рис. 54 можно выбрать рабочую точку, соответствующую Uсм = 200 мв, и при этом эмиттерный ток покоя Iэ‑п будет равен 6 ма. А можно сместить рабочую точку вправо, выбрав смещение Uсм = 250 мв, и получить при этом Iэ‑п = 10 ма. Если вы допускаете шутки в серьезном деле, то можете считать, что само название «рабочая точка», очевидно, происходит от того, что на входной характеристике в том ее месте, которое соответствует выбранному смещению Uсм , действительно ставят довольно жирную точку.

На входной характеристике можно выделить две крайние точки, соответствующие наибольшему допустимому току Iэ‑доп и напряжению, при котором заканчивается загиб (у нас это 150 мв). Участок характеристики, который лежит между этими крайними точками, называется прямолинейным участком. Для того чтобы полностью использовать этот участок, нужно подобрать смещение («рабочую точку»), соответствующее его середине.

Вывод второй. Увеличение смещения влечет за собой повышение токов покоя Iэ‑п и Iк‑п , а значит, увеличение мощности, потребляемой от источников питания. Поэтому не стоит увеличивать смещение без надобности, и наоборот, если это возможно, смещение следует уменьшать, повышая таким образом экономичность усилителя.

Вывод третий. Напряжение смещения Uсм следует устанавливать с учетом того, какой входной сигнал будет подводиться к усилителю. Если напряжение сигнала невелико, то незачем пользоваться всем прямолинейным участком входной характеристики и добиваться, чтобы ток покоя попадал на середину этого участка. В случае малого сигнала смещение может быть небольшим. При этом и токи покоя Iэ‑п и Iк‑п будут небольшими.

Вывод четвертый. Выбор рабочей точки в середине прямолинейного участка позволяет подвести к усилителю входной сигнал, самый большой из всех возможных. Если же почему‑либо окажется, что входной сигнал все равно выходит за пределы дозволенного, то в этом случае можно уменьшить его с помощью обычного потенциометра (например, регулятора громкости).

Здесь могут возникнуть серьезные опасения. С помощью потенциометра действительно можно менять входное напряжение и при достаточно большом Uсиг выходить из прямолинейного участка или входить в него. Но не опасно ли пользоваться усилителем, который работает в подобном режиме? Ведь достаточно слегка повернуть ручку регулятора, чтобы напряжение на базе превысило допустимую величину.

Скажем прямо, такие опасения не лишены оснований – слишком большим напряжением сигнала действительно можно вывести из строя эмиттерный переход. Однако в усилителях, собранных по уже рассчитанным и проверенным схемам, до этого дело обычно не доходит. Напряжение на базе приходится ограничивать еще задолго до того, как наступает опасность «теплового разрушения» эмиттерного перехода. Как правило, увеличение входного сигнала становится невозможным из‑за искажений, возникающих в выходной цепи. Но это уже, как говорится, совсем другая история.

Вывод пятый. В коллекторной цепи имеются два главных героя, определяющих степень искажения сигнала, усиление и режим транзистора: это нагрузка и питающая батарея. Повышение напряжения питания Ек , как это ни странно, само по себе ничего не дает. Может оказаться так, что, повысив постоянное напряжение на коллекторе, вы ничего не выиграете и переменное выходное напряжение (а значит, и выходная мощность) каким было, таким и останется. Происходит это потому, что само повышение коллекторного напряжения практически не влияет на коллекторный ток – выходные характеристики идут очень полого. А поскольку повышение Ек не увеличивает Iк , то оно не увеличивает и напряжение Uн, которое, как известно, пропорционально коллекторному току.

Законный вопрос: если коллекторное напряжение так уж не влияет на коллекторный ток и, следовательно, на выходной сигнал, то, может быть, стоит понизить это напряжение? Зачем в карманном приемнике батарея с напряжением 9 в, если можно ограничиться 1,5 в или еще меньшим напряжением? Разумеется, вопросы эти возникают только потому, что о роли питающего напряжения было рассказано далеко не все. Увеличение Ек если само и не повышает выходную мощность, то дает возможность ее повысить – для этого нужно увеличить входной сигнал или сопротивление нагрузки или сделать и то и другое одновременно. Проще говоря, повышение Ек поднимает «потолок» выходной мощности.

Вывод шестой. Чем выше питающее напряжение, тем большим может быть «размах» управляющего напряжения Uэб и тем, следовательно, больше будут меняться коллекторный ток и коллекторное напряжение.

Вывод седьмой. Чем выше питающее напряжение Ек , тем большую нагрузку можно включить в коллекторную цепь, не опасаясь ни попадания в область искажений, ни того, что Uбк в какие‑то моменты окажется слишком близким нулю. А это значит, чем больше Ек , тем большее усиление можно «выжать» из одного транзистора, увеличивая Rн . Здесь, правда, существует новая опасность – при чрезмерном усилении усилитель может превратиться в генератор (см. стр. 303), и поэтому всегда существует некоторый предел усиления, дальше которого продвинуться просто не удается.

Вывод восьмой. Чудес не бывает. Нужно отдать себе отчет в том, что, пытаясь поднять усиление, увеличить переменную составляющую коллекторного тока, переменную составляющую коллекторного напряжения, а значит, выходную мощность и повышая для достижения всех этих целей питающее напряжение, мы одновременно увеличиваем мощность потребляемую от источника питания.

Вывод девятый. Если, несмотря на все эти предостережения, вы все же захотите подвести к транзистору как можно большее питающее напряжение, то не забывайте, что существует граница – допустимая мощность – и что переходить эту границу можно только в том случае, если вы хотите избавиться от своего транзистора и не можете найти для этого более простой способ. Специалисты рекомендуют всегда иметь некоторый запас и считают, что разумный потолок коллекторного напряжения на 10–20 % меньше допустимой величины.

Вывод десятый. Увеличивая сопротивление нагрузки в погоне за большим усилением сигнала, можно попасть в другую запретную зону – в область выходной характеристики, где происходит искажение формы сигнала. Это объясняется просто: чем больше сопротивление Rн , тем большая часть Ек достается этому сопротивлению и тем, следовательно, меньшее напряжение остается на самом коллекторе. Увеличивая Rн , можно до того «доувеличить» Uн , что на коллекторе в некоторые моменты вообще ничего не останется и из‑за этого сильно исказится форма выходного сигнала.

Вывод одиннадцатый. Чем меньше сопротивление нагрузки Rн , тем круче идет нагрузочная прямая. И это вполне понятно: с уменьшением Rн уменьшается теряемое на нем напряжение Uн и, следовательно, растет напряжение на коллекторе. При отсутствии нагрузки, то есть когда Rн = 0, нагрузочная прямая представляет собой вертикальную линию и говорит о том, что ток в коллекторной цепи меняется, а напряжение на коллекторе остается неизменным. (А с чего бы ему меняться, если теперь питающее напряжение Ек не делится ни на какие части и целиком подводится к коллектору?) При коротком замыкании нагрузки (Rн = 0) транзистор легче чем когда бы то ни было может перейти предельно допустимую мощность.

Вывод двенадцатый. Дать рецепт подбора правильного режима транзистора на все случаи жизни невозможно. Напряжение смещения Uсм , напряжение питания Ек сопротивление нагрузки Rн , напряжение сигнала Uсиг сложным образом связаны между собой и все вместе еще более сложным образом влияют на условия работы усилителя, на такие его показатели, как усиление, мощность усиленного сигнала, надежность и др. Поэтому, изменяя один из показателей (Uсиг, Uсм, Ек или Rн ), подумайте, как при этом нужно и как можно изменить другие показатели и как в итоге изменится весь режим в целом.

 

 

Какими бы интересными и полезными ни показались все эти выводы о работе транзисторного усилителя, мы обязаны сделать еще один, по смыслу неприятный, а по счету тринадцатый вывод. Все характеристики мы строили и все выводы по ним делали только для одной главной схемы транзисторного усилителя, а таких главных схем существует три. Чем отличаются две другие схемы от той, с которой мы уже знакомы? Как выглядят для этих двух новых, неизвестных пока схем входные и выходные характеристики? Действительны ли для них сделанные нами двенадцать практических выводов?

Ответ на эти вопросы сможет быть дан лишь после того, как мы детально познакомимся со всеми тремя главными схемами транзисторных усилителей.

«2 + 2 = 3»

Предметом нашего дальнейшего разговора будет именно это странное равенство. Конечно, если бы мы занимались арифметикой, то здесь не о чем было бы говорить – ошибка слишком очевидна. Но в данном случае «2 + 2 = 3» относится к схемам электронных усилителей и является попыткой в шутливой форме отобразить такой факт: два провода, по которым слабый сигнал вводится в усилитель, и два провода, по которым усиленный сигнал выводится из усилителя, нужно подключить к трем выводам транзистора. То есть четыре провода нужно подключить к трем, «2 + 2 = 3».

Чтобы осуществить такое подключение, есть только один путь. Нужно к одному из выводов транзистора – к базе, эмиттеру или коллектору – подключить сразу два провода: один входной и один выходной. (Подключить к одному и тому же выводу транзистора два входных провода или два выходных бессмысленно – это равносильно короткому замыканию цепи.) Та зона транзистора, к которой подключаются сразу два провода, называется общей – она действительно является общей для входной и выходной цепи.

В принципе любой из трех электродов (эмиттер, коллектор и базу иногда называют электродами транзистора, а иногда его зонами) может быть общим, и поэтому существуют три основные схемы транзисторных усилителей: схема с общей базой, схема с общим эмиттером и схема с общим коллектором.

Прежде чем разбирать достоинства и недостатки каждой из них, рассмотрим ситуацию «2 + 2 = 3» применительно к обычному трансформатору (рис. 65, листки 1, 2, 3, 4 ).

 

 

Рис. 65. Два вывода источника сигнала и два вывода нагрузки нужно подключить к трем выводам транзистора, и отсюда появляются три основные схемы включения транзисторного усилителя: с общей базой (ОБ ), с общим эмиттером (ОЭ ) и с общим коллектором (ОК ).

 

Предположим, что у нас есть трансформатор, ко входу которого (первичная обмотка) подключен генератор, дающий переменное напряжение, а к выходу (вторичная обмотка) подключена нагрузка Rн . Нормальное подключение генератора и нагрузки к трансформатору («2 + 2 = 4») показано на листке 1 .

Теперь предположим, что один из выводов первичной обмотки соединен в самом трансформаторе с одним из выводов вторичной обмотки, и таким образом у трансформатора оказывается всего три вывода вместо четырех.

Самая простая и естественная схема подключения генератора и нагрузки к такому трансформатору с тремя выводами показана на листке 2 . Мы называем эту схему естественной, потому что она очень напоминает схему 1 – между обмотками, по сути дела, нет непосредственной связи. Во всяком случае, входное и выходное напряжения друг от друга изолированы.

Однако эта схема не единственно возможная – на листках 3 и 4 показаны еще две схемы, позволяющие решить проблему «2 + 2 = 3». Эти схемы уже нельзя назвать ни простейшими, ни естественными. Каждая из них – это своего рода фокус, попытка вместо простого решения задачи выбрать сложное.

Действительно, в этих двух последних схемах «смешались в кучу» токи и напряжения входных и выходных цепей. Так, в схеме 3 , где общим является вывод «э » (мы обозначили три вывода трансформатора буквами «э », «б » и «к » лишь потому, что схемы 2, 3, 4 чем‑то напоминают три основные схемы включения транзистора), во входной цепи циркулирует не только ток, создаваемый самим генератором, но еще и ток, протекающий через нагрузку. Это происходит потому, что в схеме 3 нагрузка оказывается включенной последовательно с генератором и участком эб , в котором находятся генератор и первичная обмотка трансформатора.

(Это особенно хорошо видно на схеме 3' , которая является «двойником» схемы 3 . На схеме 3' лишь несколько по‑иному расположены детали на рисунке, сама же схема осталась без изменений. Благодаря такому «перемещению» элементов схемы их взаимное влияние стало более наглядным.)

При определенном включении обмоток в схеме 3 оба тока – входной и выходной – противофазны (во всех цепях протекает, разумеется, переменный ток, а стрелки показаны лишь для одного из полупериодов; см. стр. 77), и поэтому можно сказать, что схема отличается небольшим входным током, разностью двух встречных токов. Кроме того, напряжение, развиваемое на вторичной обмотке, теперь делится между нагрузкой и участком эб . Это хорошо видно на схеме 3' , которая является «двойником» схемы 3 . В схеме 3 (3' ) нагрузке достается большая часть выходного напряжения лишь в том случае, если ее сопротивление значительно больше, чем у конкурента– участка эб (Воспоминание № 7),

В схеме 4 (4' ), где общим является вывод к, напряжение, развиваемое генератором, делится между первичной обмоткой и участком бк , куда входит вторичная обмотка, поэтому выходное напряжение никак не может быть больше, чем дает генератор.

Мы не будем подробно разбирать, что происходит в двух последних схемах, и ограничимся лишь общим выводом. Ситуация там оказывается достаточно сложной и запутанной. Но подобная путаница, приводящая к искусственному увеличению или уменьшению некоторых токов или напряжений, в ряде случаев оказывается весьма выгодной. И мы в этом сейчас убедимся на примере трех основных схем транзисторных усилителей (рис. 65, листки 5, 6, 7 ).

Первая схема, с которой мы, собственно говоря, начали знакомство с транзисторным усилителем, – это схема с общей базой, сокращенно ОБ (рис. 66).

 

 

Рис. 66 . Схема транзисторного усилителя, о которой до сих пор шла речь, – это схема с общей базой (ОБ ).

 

Главная особенность схемы ОБ в том, что источник усиливаемого сигнала и источник смещения включены в цепь, по которой проходит эмиттерный ток. («А разве бывает иначе?» – удивляетесь вы. Да, бывает – очень скоро будет показано, что в двух других схемах через источник сигнала и источник смещения может проходить ток базы Iб , который во много раз меньше эмиттерного.) То, что источники напряжений Uсиг и Uсм , которые вместе создают управляющее напряжение Uэб , находятся в цепи эмиттерного тока, приводит к нескольким очень неприятным последствиям.

Во‑первых, эмиттерный ток (в схеме ОБ – это ток входной цепи) является «потолком» для коллекторного тока, а значит, схема ОБ в принципе не может давать усиление по току. Именно к этой схеме (и, кстати, только к этой схеме) относится уже давно сделанный вывод: коэффициент усиления по току α всегда меньше единицы.

Во‑вторых, в схеме ОБ источникам, создающим Uэб , достается не слишком, легкая работа – они должны перемещать по входной цепи все заряды, которые создают довольно большой (по величине такой же, как и Iк ) эмиттерный ток. И хотя сопротивление эмиттерного pn ‑перехода, включенного в прямом направлении, невелико, но все же от источника смещения и, что особенно неприятно, от источника сигнала требуется сравнительно большая мощность, чтобы продвинуть по своему участку довольно большое количество зарядов, образующих эмиттерный ток.

И, наконец, третье. Как мы уже видели, входное сопротивление транзистора в схеме ОБ (а мы до сих пор знакомились только с этой схемой и входное сопротивление определяли – рис. 56 – именно для нее) оказывается очень небольшим, всего несколько омов или в лучшем случае несколько десятков омов. Такое малое входное сопротивление как раз и получается потому, что в схеме ОБ по входной цепи идет сравнительно большой ток Iэ . А, как известно из закона Ома (Воспоминание № 3), большой ток как раз и говорит о малом сопротивлении.

Схема ОБ имеет, разумеется, и немало приятных, положительных особенностей. Но сейчас речь не о них. Сейчас нам нужно, не теряя темпа, пока свежи в памяти все недостатки схемы ОБ, найти способ их устранения. Тем более, что сделать это довольно просто. Нужно перенести источники сигнала и смещения в цепь базы и получить таким образом схему с общим эмиттером, или сокращенно ОЭ (рис. 67).

 

 

Рис. 67. Основное отличие схемыОЭ от схемы ОБ в том, что источник сигнала переведен из цепи сравнительно большого эмиттерного тока в цепь небольшого тока базы.

 

Главная особенность схемы ОЭ в том, что источник сигнала (для краткости в дальнейшем мы будем говорить только об источнике сигнала, полагая, что вместе с ним включен и источник смещения) включен не в эмиттерную, а в базовую цепь и благодаря этому по входной цепи протекает уже не ток эмиттера, а во много раз меньший ток базы.

Прежде чем отмечать достоинства такого включения, поясним, что ничего принципиально нового для самого транзистора оно не дает. Включение транзистора по схеме ОЭ – просто схемный фокус. И хотя это очень интересный фокус, позволяющий улучшить важные показатели транзисторного усилителя, однако же самого принципа работы транзистора схема ОЭ не меняет.

Действительно, поставщиком зарядов для коллекторного тока в схеме ОЭ, так же как и в схеме ОБ, служит эмиттер – в коллектор может попасть не больше зарядов, чем их вышло из эмиттера. В схеме ОЭ заряды проходят по коллекторной цепи, так же как и в схеме ОБ под действием коллекторного напряжения, и создают мощную копию усиленного сигнала на сопротивлении нагрузки Rн . Правда, в схеме ОЭ напряжение делится уже не между двумя потребителями, как в схеме ОБ, а между тремя. Кроме самой нагрузки и коллекторного pn ‑перехода, часть напряжения Ек отбирает еще и эмиттерный pn ‑переход – ведь в схеме ОЭ коллекторная батарея действует не между коллектором и базой, а между коллектором и эмиттером. Однако появление у коллекторной батареи лишнего «едока» не должно нас смущать – сопротивление эмиттерного перехода очень мало и, как это было бы и в другом подобном делителе (Воспоминание № 7), на малом сопротивлении остается малая часть приложенного напряжения. Одним словом, можно смело считать, что коллекторная батарея в схеме ОЭ, так же как и в схеме ОБ, тратит свои основные силы только на то, чтобы двигать заряды через коллекторный pn ‑переход и сопротивление нагрузки.

Теперь вернемся к главной особенности схемы ОЭ – к включению источника сигнала в цепь базы.

Подобный «фокус» на первый взгляд кажется очень подозрительным и вызывает целый ряд сомнений. Не прекратится ли в связи с таким переселением входного сигнала его влияние на эмиттерный pn ‑переход? А если не прекратится, то будет ли управляющее напряжение в такой же степени, как и в схеме ОБ, управлять эмиттерным, а значит, и коллекторным током? Не окажется ли эмиттерный ток брошенным на произвол? И, наконец, если даже переброска источника сигнала в цепь базы не нарушит работы транзистора, то что даст такая переброска усилителю, как она повлияет на его режим и улучшит ли его основные параметры?

Хочешь не хочешь, а придется отвечать на эти страшные вопросы…

Все, что происходит в любом pn ‑переходе, в том числе и в эмиттерном, прежде всего зависит от приложенного к этому переходу напряжение – именно об этом говорит характеристика диода (рис. 19). В схеме ОЭ, точно так же как и в схеме ОБ, управляющее напряжение Uэб полностью подводится только к эмиттерному переходу, так как и в той и в другой схеме один вывод источника сигнала подключен к эмиттеру, а второй вывод – к базе (через батарею смещения Бсм ). Таким образом, в обеих схемах управляющее напряжение Uэб будет в равной степени влиять на величину эмиттерного, а значит, и коллекторного тока. А то, что, полностью сохранив влияние управляющего напряжения на эмиттерный ток, мы умудрились не пропускать этот ток по самой управляющей цепи, это просто наша заслуга. Именно в этом и заключается весь смысл «фокуса» с переброской источника сигнала в цепь базы.

Главное отличие схемы ОЭ от схемы ОБ может в какой‑то степени пояснить их гидравлические аналогии, приведенные на рис. 40 и 67. В гидравлических системах ОБ и ОЭ (гидравлические системы названы так же, как и схемы транзисторных усилителей, только для того, чтобы их проще было сравнивать) роль источника управляющего напряжения Uэб играют два небольших насоса «Сигнал» и «Смещение». Эти насосы создают давление, под действием которого поршень двигает заслонку «Управляющее напряжение» на пути воды из бака «Эмиттер» в бак «База». Действие этой заслонки уподобляется напряжению Uэб , которое и управляет эмиттерным током, то есть током, идущим из эмиттера в базу.

В гидравлической схеме ОБ насосы «Сигнал» и «Смещение» не только поднимают или опускают заслонку «Управляющее напряжение», но еще и перемещают весь поток жидкости на небольшом участке «Точка 0» – «Эмиттер».

В гидравлической схеме ОЭ насосы «Сигнал» и «Смещение» освобождены от этой работы – они лишь двигают заслонку «Управляющее напряжение», а всю работу по перемещению жидкости на всем ее пути – от «Эмиттера» до «Эмиттера»– выполняет только насос «Коллекторная батарея».

Именно в том, что насосы «Сигнал» и «Смещение» освобождены от работы по перекачиванию всей воды в бак «Эмиттер» и заняты лишь своим главным делом – регулированием потока из «Эмиттера» в «Базу», именно в этом главное отличие гидравлической системы ОЭ от системы ОБ. Во всем же остальном эти системы очень похожи. Во всяком случае, принцип работы обеих гидравлических систем одинаков.

Насос «Сигнал», затрачивая небольшую мощность (в ОБ она немного больше, в ОЭ немного меньше, но в обеих системах эта мощность невелика), управляет мощным потоком воды «Коллекторный ток». Этот поток создается благодаря тому, что насос «Коллекторная батарея» поднимает воду на высокий уровень. Мощный, падающий с большой высоты «коллекторный ток» вращает турбину «Нагрузка».

Если насос «Сигнал» бездействует, турбину вращает поток неизменной силы – поток покоя, который зависит только от «смещения». Но если ввести в систему слабый гидравлический сигнал и с помощью насоса «Сигнал» периодически перемещать вверх‑вниз заслонку «Управляющее напряжение», то интенсивность мощного потока тоже будет меняться. При этом будет меняться и скорость вращения турбины «Нагрузка», создавая своего рода мощную копию всех изменений интенсивности «Сигнала».

Вернемся, однако, к нашим транзисторным усилителям. О том, что принцип усиления слабого сигнала в схеме ОЭ остается таким же, как и в схеме ОБ, говорит сходство их входных и выходных характеристик. Входные характеристики схемы ОЭ (рис. 68) показывают, что ток эмиттера, ток базы и ток коллектора при изменении управляющего напряжения Uэб меняются примерно так же, как и в схеме ОБ. Следует, правда, подчеркнуть, что для ОЭ главной характеристикой нужно и можно считать зависимость от Uэб уже не эмиттерного тока, а тока базы Iб . Эту характеристику нужно считать главной потому, что именно ток базы проходит по входной цепи (по цепи источника сигнала) и определяет все происходящие в ней события.

 

 

Рис. 68. Входная характеристика транзистора в схеме ОЭ относится уже не к току эмиттера, а к току базы, так как именно он протекает во входной цепи; выходная характеристика несколько круче, чем в схеме ОБ .

 

Эту характеристику можно считать главной потому, что ток базы – это часть тока эмиттера, который в итоге определяет события во всем транзисторе. И самое главное то, что ток базы Iб – это не просто часть тока эмиттера Iэ , а строго определенная его часть. Так, например, при α = 0,99 ток базы составляет один процент тока эмиттера. Иными словами, ток эмиттера примерно в сто раз (точнее, в девяносто девять раз) больше тока базы. Если, например, Iб увеличился на 5 мка, то можно смело сказать, что при этом Iэ увеличился примерно на 500 мка. А все это означает, что главная входная характеристика схемы ОЭ – зависимость тока базы Iб от управляющего напряжения Uэб – одновременно рассказывает, как при изменении Uэб меняется ток эмиттера Iэ , ток коллектора Iк , и в итоге – напряжение на нагрузке Uн.

Выходные характеристики транзистора в схеме ОБ и ОЭ также очень похожи, если не считать некоторых, как правило, второстепенных отличий. Одно из таких отличий – более резкий подъем выходных характеристик, который говорит о том, что Iк несколько сильнее зависит от коллекторного напряжения, чем в схеме ОБ. Поэтому‑то с увеличением Uэк (теперь выходные характеристики уже показывают зависимость Iк от напряжения между эмиттером и коллектором) коллекторный ток растет сильнее, чем в схеме ОБ он рос с увеличением Uбк .

И все же общее, результирующее влияние коллекторного напряжения на коллекторный ток остается очень небольшим, а выходные характеристики схемы ОЭ идут достаточно полого. А поэтому и выходное сопротивление транзисторов в схеме ОЭ хотя и меньше, чем в схеме ОБ, но также остается очень большим, достигая десятков и сотен килоом (рис. 68).

Вот другое отличие выходных характеристик схем ОЭ и ОБ. В схеме ОЭ коллекторный ток прекращается при нулевом напряжении на коллекторе, а чтобы прекратить коллекторный ток в схеме ОБ, нужно было подать на коллектор очень небольшой «плюс». Из‑за того, что выходные характеристики в схеме ОЭ начинают загибаться при более высоком напряжении на коллекторе, запрещенная зона «Искажения» для этой схемы оказывается несколько больше.

И, наконец, третье отличие. При нулевом управляющем напряжении Uэб коллекторный ток в схеме ОБ – он называется сквозным или начальным током коллектора и обозначается Iк‑н – значительно больше, чем неуправляемый ток Iк0 в схеме ОБ. Это опять‑таки связано с тем, что некоторая часть коллекторного напряжения приложена к эмиттерному переходу и отпирает его, даже если внешнее управляющее напряжение равно нулю.

Все перечисленные отличия в принципе не меняют «взаимоотношений» между коллекторным током Iк , напряжением на нагрузке Uн и на коллекторе Uэк , эмиттерным током Iэ , напряжением сигнала Uсиг , смещением Uсм и сопротивлением нагрузки Rн . А поэтому выводы, сделанные нами на основании анализа входных и выходных характеристик схемы ОБ (рис. 64), в основном остаются в силе и для схемы ОЭ.

Итак, наш «фокус» удался – перевод источника сигнала в цепь базы в принципе не изменяет работы транзистора. Теперь остается доказать, что игра стоит свеч, что включение транзистора по схеме ОЭ каким‑то образом улучшает параметры усилительного каскада.

По сравнению со схемой ОБ у схемы ОЭ есть три основных достоинства. Все они связаны с тем, что по входной цепи схемы ОЭ (то есть через источник усиливаемого сигнала) протекает ток базы, который во много раз меньше эмиттерного тока во входной цепи схемы ОБ (рис. 69).

 

 

Рис. 69 . Коэффициент усиления тока в схеме ОЭ–β , по сути дела, показывает, во сколько раз мы разгрузили входную цепь при переходе от схемы ОБ к схеме ОЭ .

 

Благодаря резкому уменьшению тока во входной цепи, во‑первых, уменьшается потребляемая в ней мощность, то есть мощность, которую должен отдать усилителю не кто иной, как слабый усиливаемый сигнал. Во‑вторых, благодаря уменьшению тока возрастает входное сопротивление, а это, как мы вскоре увидим, резко облегчает согласование усилителя с источником сигнала. И, наконец, третье: поскольку ток базы, который теперь должен создать источник сигнала во много раз меньше эмиттерного, а значит, и коллекторного тока, то схема ОЭ дает не только усиление по напряжению, как схема ОБ, но еще и усиление по току. А в итоге усиление по мощности у схемы ОЭ оказывается значительно больше, чем у схемы ОБ.

Чтобы количественно оценить все выгоды, которые дает схема ОЭ, вводят еще один параметр транзистора – коэффициент усиления по току в схеме с общим эмиттером. Этот коэффициент обозначают буквой β (греческая «бета»; существует несколько разновидностей этого коэффициента: одни из них обозначают буквой В , другие – буквой β ). Коэффициент β должен показать, во сколько раз мы разгрузили источник сигнала при переводе его из эмиттерной цепи в цепь базы, то есть коэффициент β показывает, во сколько раз при одном и том же управляющем напряжении ток базы меньше, чем ток эмиттера, или, что почти то же самое (токи Iэ и Iк примерно равны), во сколько раз Iб меньше, чем Iк . Определив, например, по входным характеристикам, что при Uэб = 200 мв, Iб = 600 мка, (0,6 ма), а Iэ = 6 ма (рис. 54), легко подсчитать, что β = Iэ:Iб = 10. Но это примерное, упрощенное определение коэффициента β .

Точное значение коэффициента усиления по току β можно получить, если при неизменном коллекторном напряжении Uэк изменять управляющее напряжение Uэб и одновременно следить за тем, как изменяются два тока – ток во входной цепи (то есть Iб ) и ток в выходной цепи (то есть Iк ). Затем, определив прирост того и другого тока ΔIб и ΔIк , находим β как их отношение β = ΔIкIб (рис. 72).

Иными словами, точнее (динамическое) значение β показывает, во сколько раз при одном и том же изменении управляющего напряжения Uэб изменения выходного тока ΔIк оказываются больше, чем изменения входного тока ΔIб . Так, например, определив по входным характеристикам (рис. 54), что при изменении Uэб от 200 мв до 250 мв ток базы увеличился на 400 мка (0,4 ма), а ток коллектора примерно на 4 ма, легко найти β как отношение этих приростов: β = 4: 0,4 = 10.

Упрощенное определение коэффициента β , как правило, очень близко к «официальной», измеренной по всем правилам его величине. И это вполне понятно. Во‑первых, коллекторный ток почти равен эмиттерному, и с каким бы из этих токов мы ни сравнивали ток базы Iб , результат будет примерно одинаковым. Во‑вторых, все токи транзистора «пляшут под дудку» управляющего напряжения – во сколько увеличится или уменьшится Uэб , во столько же раз приблизительно увеличатся или уменьшатся сразу все три тока Iэ, Iб, Iк . Поэтому‑то сравнивать приросты этих токов почти то же самое, что сравнивать и сами токи при одном и том же значении Uэб . На сравнении тока базы с током коллектора основано измерение коэффициента усиления по току β в простейших любительских приборах (рис. 70). Существуют простые приборы и для более точного определения β путем сравнения прироста ΔIк с ΔIб .

 

 

Рис. 70. Примерную величину коэффициента β можно определить с мощью простейших самодельных приборов.

 

Хотя обычно при определении коэффициента усиления по току мы сравниваем ток базы с током коллектора, этот коэффициент, как уже было сказано, очень хорошо характеризует изменения, которые произошли во входной цепи при переходе от схемы ОБ к схеме ОЭ. Конкретно β показывает, во сколько раз уменьшился ток в цепи источника сигнала (входная цепь усилителя) после того, как по этой цепи стал проходить ток базы вместо тока эмиттера. А показывая уменьшение входного тока, коэффициент β количественно определяет изменение параметров усилителя при переходе к схеме ОЭ.

Вот эти изменения (рис. 71).

 

 

Рис. 71. Входной ток в схеме ОЭ значительно (в β раз) меньше, чем в схеме ОБ , и это приводит к появлению многих ценных качеств схемы с общим эмиттером.

 

Поскольку в β раз уменьшается входной ток, а выходной (коллекторный) остается без изменений, то можно сказать, что транзистор усиливает уже не только напряжение, но еще и ток в β раз. Отсюда и название – коэффициент усиления по току.

Входное сопротивление возрастает примерно в β раз нее в β + 1 раз) опять‑таки потому, что в β раз уменьшается входной ток, который определяет это сопротивление. Ничего не поделаешь, закон Ома – R = U : I ; чем меньше ток, тем, значит, больше сопротивление.

Для управления транзистором от сигнала требуется в β раз меньшая мощность. Опять же потому, что в β раз уменьшается входной ток, определяющий эту мощность. Чем меньше ток, тем меньше мощность – Р = U ·I . А если в β раз уменьшается входная мощность при неизменной выходной мощности, то, значит, коэффициент усиления по мощности также возрастает в β раз.

Как видите, коэффициент β оказывает сильнейшее влияние на параметры усилителя, и не случайно при выборе транзистора для той или иной схемы любители прежде всего обращают внимание на его коэффициент β , стараясь выбрать транзистор, у которого этот коэффициент побольше.

Нужно сразу же предупредить, что выбирать транзисторы, руководствуясь только одним лозунгом «Даешь бету!», тоже неверно. Во‑первых, транзисторы с более высоким β , как правило, стоят дороже, а многие из них не всегда легко достать. И может случиться так, что, применив транзистор с высоким β в схеме, где он не очень нужен или даже совсем не нужен, вы тем самым лишите своего товарища – это ведь неважно, знакомого или незнакомого – возможности применить такой транзистор в схеме, где он необходим.

Во‑вторых (если вам еще не достаточно «во‑первых»!), при включении транзисторов с высоким β в схему, которая на них не рассчитана, может произойти не улучшение, а ухудшение параметров этой схемы, вплоть до ее полной непригодности. Это ведь только говорится, что маслом каши не испортишь. А попробуйте на полтарелки каши положить полтарелки масла. Вряд ли вам такое блюдо покажется вкусным, не говоря уж о том, что от него идет прямая дорога к врачу. Вот так и применение транзистора со слишком большим β может иногда привести к неприятным последствиям, превратив, например, усилитель в генератор.

В электронных схемах нужно применять транзисторы с таким коэффициентом β , на который эти схемы рассчитаны. Разумеется, применяя транзисторы с более высоким β , часто можно создавать более эффективные схемы, с лучшими параметрами. Но в то же время не менее интересно при разработке или совершенствовании схем получить хорошие результаты, применяя дешевые и доступные транзисторы с низким коэффициентом β .

Кстати говоря, коэффициент β так же, как и коэффициент α , говорит о том, какая часть эмиттерного тока используется для создания коллекторного тока, а какая часть уходит через базу. Но только а показывает, какую часть от Iэ составляет Iк , а коэффициент β показывает, во сколько раз ответвляющийся в базу ток β меньше основного тока Iк . Поскольку коэффициенты α и β характеризуют один и тот же процесс разделения Iэ на две части (примерно гак же период колебаний и частота характеризуют один и тот же процесс), то эти коэффициенты связаны друг с другом, и, зная один из них, можно легко подсчитать другой (рис. 72).

 

 

Рис. 72. Оба коэффициента α и β по‑разному характеризуют одно и то же: ответвление части эмиттерного тока в базу.

 

Схема с общим эмиттером имеет серьезные достоинства (усиление по току, большое усиление по мощности и сравнительно высокое входное сопротивление) и серьезные недостатки. Однако ничего плохого о схеме ОЭ мы сейчас говорить не будем. И совсем не потому, что собираемся замалчивать ее недостатки – о них еще будет особый разговор. Мы не будем говорить о недостатках схемы ОЭ, потому что в большинстве случаев с ними удается вести эффективную борьбу, и не стоит умалять поэтому важные достоинства схемы. Освобожденная от недостатков и не утратившая достоинств схема ОЭ является основной схемой транзисторных усилителей.

И все же схема с общим эмиттером – только основная практическая схема, но никак не единственная. В ряде случаев она уступает место уже хорошо знакомой нам схеме с общей базой или схеме с общим коллектором (схема ОК; рис. 73), с которой нам сейчас предстоит познакомиться. Кстати, эту схему иногда называют «эмиттерный повторитель».

Привыкнув к тому, что в схемах ОБ и ОЭ усиливается напряжение, следовало бы прежде всего назвать усилитель, работающий по схеме ОК, не усилителем, а ослабителем. Действительно, в схеме ОК управляющее напряжение подводится к своеобразному делителю, в который входит сопротивление нагрузки Rн и эмиттерный рn ‑переход транзистора. Для того чтобы возникновение этого делителя стало более наглядным, на одном из листов рис. 73 база транзистора несколько вытянута и изогнута. Это, разумеется, лишь графический трюк, который никакого отношения к устройству транзистора не имеет. Этот трюк нужен для того, чтобы на самом рисунке поставить в один ряд эмиттерный pn ‑переход и нагрузку Rн , а затем наглядно показать их подключение к источнику сигнала в виде делителя напряжения. Напряжение входного сигнала Uвх , подведенное к делителю, делится между его участками – между эмиттерным pn ‑переходом и нагрузкой Rн .

 

 

Рис. 73. Главная особенность схемы с общим коллектором (ОК ) – высокое входное сопротивление.

 

Поэтому на долю нагрузки приходится переменное напряжение Uвых , которое никак не больше, чем Uвх , а напротив, даже меньше его. Именно так – часть напряжения сигнала остается на эмиттерном pn ‑переходе, выходное напряжение всегда меньше, чем входное напряжение, то есть схема ОК ослабляет напряжение. С этим как раз и связано название «эмиттерный повторитель» – схема не усиливает напряжение сигнала, а лишь повторяет его, оставляя неизменным (практически Uвых лишь незначительно меньше, чем Uвх ).

Так же как эго было и при знакомстве со схемой ОЭ, сразу же возникает куча вопросов. Для чего нужен такой схемный фокус? Зачем подавать входной сигнал не на его законное место, не на эмиттерный переход, а туда, где входному сигналу вообще нечего делать, – на переход база‑коллектор (всмотритесь в схему: именно между базой и коллектором включен источник сигнала). Как же в такой схеме входной сигнал может управлять коллекторным током, если этот сигнал лишен своего командного поста – эмиттерного рn ‑перехода? Для чего нужно превращать схемы, которые усиливают напряжение, в схему, которая его ослабляет? Если так уж хочется ослабить сигнал, зачем для этого транзистор – достаточно делителя, составленного из двух резисторов!

Ответив на эти вопросы, можно прийти к выводу, что схема ОК работоспособна, что она обладает некоторыми достоинствами и в ряде случаев просто незаменима.

Внимательно познакомившись со схемой ОК, убедимся, что «с ходу» мы приписали ей лишний недостаток – схема действительно не усиливает напряжения, но и почти не ослабляет его. Все дело в том, что сопротивления участков делителя, на который работает источник сигнала, сильно различаются по величине. Сопротивление эмиттерного pn ‑перехода мало, во много раз меньше, чем сопротивление нагрузки Rн . Поэтому нагрузке достается почти все напряжение сигнала Uсиг , а значит – входное и выходное напряжения усилителя примерно равны.

А что же делает оставшаяся часть сигнала, что делает напряжение Uэб ? Оно, как и всякое напряжение, приложенное к эмиттерному переходу, управляет эмиттерным, а значит, и коллекторным током. Таким образом, входной сигнал выполняет свои управляющие функции, хотя, конечно, направляет на это дело лишь небольшую часть своего напряжения.

То, что усилитель, работающий по схеме ОК, не усиливает напряжение, еще не дает оснований называть его ослабителем. Мы уже давно договорились (стр. 92), что об усилении можно судить, только сравнив входную и выходную мощность. А такое сравнение как раз говорит о том, что схема ОК имеет все права называться усилительной. Почти не уменьшая напряжения, схема ОК примерно в β раз усиливает ток, а значит, примерно в β раз усиливает мощность. Правда, нам еще остается доказать, что в схеме ОК ток действительно усиливается в β раз. Но это уже не сложно.

Источник сигнала в схеме ОК, так же, кстати, как и в схеме ОЭ, включен в цепь, по которой проходит ток базы Iб . А по нагрузке, как всегда, проходит ток коллектора Iк , который в β раз больше, чем Iб . Ток базы в схеме ОК проходит по довольно длинному пути (через источник сигнала, нагрузку и эмиттерный переход), но сути дела это не меняет – ток в выходной цепи больше, чем ток во входной цепи, а значит, происходит усиление по току.

Можно сказать, что «в общем плане» схема ОК, которая усиливает ток, но не усиливает напряжение, ничем не хуже схемы ОБ, которая усиливает напряжение, но не усиливает ток. Однако эта разница – ток вместо напряжения – приводит к резкому различию входного и выходного сопротивления схем ОБ и ОК. Схема ОБ обладает очень низким входным и очень высоким выходным сопротивлением (рис. 56, 58), а схема ОК – очень высоким входным сопротивлением и сравнительно низким выходным.

То, что схема ОК имеет высокое входное сопротивление в упрощенном виде, объясняется так: ток базы, как обычно, мал, входное напряжение стало довольно большим, а это значит, что входное сопротивление схемы ОК велико. Практически оно составляет сотни килоом.

Значительно меньше оказывается выходное сопротивление, – показывающее, как меняется в нагрузке сквозной ток при изменении напряжения между эмиттером и коллектором. Динамическое выходное сопротивление обычно составляет несколько сотен или десятков ом.

На этом, пожалуй, можно закончить рассказ о том, как в транзисторных усилителях решается проблема «2 + 2 = 3» и как три разных ее решения дают разные, со своими достоинствами и недостатками, результаты (рис. 74). Сравнение трех основных схем транзисторных усилителей ОБ, ОЭ и ОК говорит о том, что, хотя «по сумме многоборья» на первое место выходит схема с общим эмиттером, две остальные имеют свои собственные, никем из конкурентов не побитые рекорды.

 

 

Рис. 74. Каждая из трех схем включения транзистора имеет свои достоинства, но в большинстве случаев отдают предпочтение схеме ОЭ за сочетание многих ценных качеств.

 

 








Дата добавления: 2016-02-24; просмотров: 1253;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.104 сек.