ВОСПОМИНАНИЕ № 10. ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ И ПЕРЕМЕННЫЙ ТОК.
Генератор, на зажимах которого «плюс» и «минус» непрерывно меняются местами, дает переменное напряжение. А под действием переменного напряжения в цепи протекает переменный ток – заряды двигаются «туда» и «обратно». Для многих элементов (например, для лампочки, электроплитки, холодильника) совершенно безразлично, куда двигаются заряды, меняется ли их направление или остается неизменным. Главное – чтобы заряды двигались и работали. Но, конечно же, многие элементы электрических цепей совершенно по‑разному ведут себя при постоянном и переменном токе. Более того, поведение многих элементов зависит от параметров (характеристик) переменного тока.
ВОСПОМИНАНИЕ № 11. ОСНОВНЫЕ ПАРАМЕТРЫ ПЕРЕМЕННОГО ТОКА (НАПРЯЖЕНИЯ).
Период.Это время, в течение которого ток проходит полный цикл изменений. Измеряется в секундах. Иногда удобно вести речь о полупериодах, которые условно называют положительным и отрицательным.
Частота– число периодов в секунду . Измеряется в герцах (гц), килогерцах (кгц), мегагерцах (Мгц) и т. д. 1 гц = 1 период за 1 сек.
Амплитуда– наибольшее значение напряжения, тока или мощности. Измеряется соответственно в вольтах, амперах и ваттах. Напряжение и ток дважды за период достигают амплитудного значения – во время положительного и отрицательного полупериодов.
Мгновенное значение напряжения, тока, мощности.Посмотрев на часы и точно заметив момент времени, можно (по крайней мере, в мысленном опыте) измерить ток именно для этого момента. Это и будет мгновенное значение тока (напряжения, мощности). Естественно, для разных моментов времени мгновенные значения различны – на то у нас и переменный ток.
Форма кривой.Официально ее не числят в параметрах переменного тока. А зря. Судить о форме кривой, то есть о характере изменения тока (напряжения), можно по его графику. А точное описание формы переменного тока (напряжения) может дать спектр – набор синусоидальных составляющих (см. стр. 60).
Эффективное значение напряжения и тока. Амплитуда говорит о наибольшей работе, которую может выполнить переменный ток. Но ведь амплитудные значения бывают редко. Чтобы судить о работоспособности тока не в один какой‑нибудь момент, а в течение длительного времени, вводится еще одна характеристика – эффективное значение тока. Оно указывает, какой величины нужно пустить в цепь постоянный ток, чтобы он работал так же, как и протекающий там переменный. Эффективное значение, как правило, меньше амплитуды, а вот на сколько меньше, это зависит уже от формы кривой, точнее, от того, каков переменный ток в интервалах между амплитудами. Для синусоидального переменного тока и напряжения (обратите внимание – только для синусоидального!) эффективный ток (напряжение) составляет 70 % амплитуды, или иначе – амплитуда на 30 % больше эффективного значения. Когда речь идет об электрических приборах или сети переменного напряжения, то приводят только эффективные токи и напряжения. Иными словами, в сети 220 в амплитуда достигает 310 в; в сети 127 в – около 180 в.
Фаза.Чтобы всякий раз не путаться с тысячными, сотыми или миллионными долями секунды, удобно разбить весь период, независимо от того, сколько он длится, на условные единицы времени – градусы. Весь период делят на 360°. При этом половина периода, естественно, равна 180°, четверть периода – 90° и т. д. Момент времени, соответствующий какому‑нибудь определенному мгновенному значению тока (напряжения), называется фазой мгновенного значения. Так, например, на нашем графике А фаза положительной амплитуды – 90°, фаза отрицательной амплитуды – 270°, фазы нулевых значений – 0°, 180° и 360°, фаза помеченного на графике значения I 1 составляет 45°. Точно так же можно было бы отметить фазы и любого другого значения тока и напряжения. Ток и напряжение на этом графике изменяются синфазно – положительные и отрицательные амплитуды наступают у них в одни и те же моменты времени. Но так бывает не всегда.
ВОСПОМИНАНИЕ № 12. СДВИГ ФАЗ.
Подключим к щей нагрузке два генератора. Их переменные напряжения могут действовать согласованно (в фазе), а могут действовать и не согласованно – со сдвигом фаз. В самом страшном случае генераторы просто работают друг против друга. Положительная амплитуда у одного из них появляется на позже, чем у другого, или, иными словами, напряжения сдвинуты по фазе на 180°. Возможны и другие сдвиги фаз между разными напряжениями, а кроме того, возможен сдвиг между переменным током и создавшим его переменным напряжением.
ВОСПОМИНАНИЕ № 13. КОНДЕНСАТОР В ЦЕПИ ПЕРЕМЕННОГО ТОКА.
Чем быстрее меняется напряжение, тем больше ток через конденсатор, этим и объясняется уменьшение хс с ростом частоты. Теперь посмотрите на график синусоидального напряжения: быстрей всего оно меняется, когда проходит через ноль, и именно в эти моменты в конденсаторе наблюдается амплитуда тока. Когда напряжение приближается к своей амплитуде, оно растет все медленнее, наконец как бы замирает на миг и начинает уменьшаться.
Вот именно во время этого «замирания» ток в цепи становится равным нулю, а затем меняет свое направление. Вывод: положительная амплитуда тока наступает на четверть периода раньше, чем положительная амплитуда напряжения, то есть ток через конденсатор опережает напряжение на нем на 90°.
ВОСПОМИНАНИЕ № 14. СОЕДИНЕНИЕ КОНДЕНСАТОРОВ.
При параллельном соединении общая емкость конденсаторов равна сумме емкостей, при последовательном соединении общая емкость меньше наименьшей. Формулы для расчета общей емкости – это те же формулы для подсчета общего сопротивления (Воспоминания №№ 5 и 6), только «перепутанные»: формула для параллельного соединения R похожа на формулу для последовательного соединения С , а формула для последовательного соединения R – на формулу параллельного соединения С .
ВОСПОМИНАНИЕ № 15. КАТУШКА В ЦЕПИ ПЕРЕМЕННОГО ТОКА.
Когда изменяется ток в катушке, то изменяется созданное этим током магнитное поле, и в результате электромагнитной индукции (наведения) катушка сама в себе наводит электродвижущую силу. Величина этой э. д. с. самоиндукции зависит от скорости изменения тока (а значит, от его частоты), а также от некоторых свойств самой катушки, которые отображены в ее коэффициенте самоиндукции, или, иначе, индуктивности L . Индуктивность L , в частности, тем больше, чем больше витков. Резко увеличивает L сердечник из стали или другого ферромагнитного материала.
Единица индуктивности – генри (гн). Такой индуктивностью обладает катушка, в которой при изменении тока на 1 а за 1 сек наводится э. д. с. 1 в.
Электродвижущая сила самоиндукции всегда препятствует изменению тока: когда ток нарастает, она мешает ему нарастать, когда ток убывает, э. д. с. самоиндукции, наоборот, поддерживает его, затягивает процесс уменьшения тока. Этим самым катушка оказывает переменному току определенное сопротивление. Это так называемое индуктивное сопротивление xL возрастает с увеличением частоты f (скорости изменения тока) и с ростом самой индуктивности L катушки. Напряжение на катушке и ток через нее также сдвинуты по фазе на 90°, но, в отличие от конденсатора, ток отстает от напряжения.
Индуктивность катушки, правда, очень приближенно можно определить по ее внешнему виду.
ВОСПОМИНАНИЕ № 16. СЛОЖНЫЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА.
Когда в общую цепь одновременно включены и активные элементы (например, резисторы), и реактивные (например, конденсаторы), то в цепи могут возникать самые разные сдвиги фаз между общим током и общим напряжением – от 0 до 90°. Так, например, если конденсатор и резистор соединены последовательно, то через них идет один и тот же ток I . При этом напряжение UR на резисторе совпадает по фазе с током, а напряжение на конденсаторе Uс , как обычно, отстает от него на 90°. Общее напряжение U на RС‑цепочке отстает от тока тем сильнее, чем больше хс по сравнению с R . А поскольку эти напряжения пропорциональны сопротивлениям хс и R , то можно сказать, что сдвиг фаз определяется соотношением этих сопротивлений.
В отличие от последовательного соединения резисторов, общее сопротивление z определяется не как алгебраическая сумма (z не равно R + xc ), а как геометрическая сумма z = √(R 2 + x 2c ). При последовательном соединении R и С влияние конденсатора возрастает с уменьшением частоты f и его емкости.
При параллельном соединении R и С на обоих этих элементах действует общее напряжение U , ток IR совпадает с ним по фазе, ток Ic опережает на 90°. Чем больше ток Ic через конденсатор, тем сильнее результирующий сдвиг фаз между U и I . Иными словами, при параллельном соединении R и С влияние конденсатора тем сильнее, чем больше его емкость и чем выше частота.
Аналогично определяется сдвиг фаз и для цепей, содержащих индуктивность L . Но здесь с увеличением частоты и индуктивности влияние катушки при параллельном соединении уменьшается, а при последовательном – растет.
ВОСПОМИНАНИЕ № 17. ФИЛЬТРЫ.
Цепи, состоящие из R и С, или R и L , или из всех трех элементов, находят чрезвычайно широкое применение в электронной аппаратуре. Они представляют собой фильтры, которые, обладая разным сопротивлением на разных частотах, позволяют отделить одни составляющие сложного тока от других.
Самый простой и самый популярный – это RС‑фильтр. Через его емкостную ветвь, то есть через конденсатор, постоянный ток вообще не проходит, и RС‑фильтр используется везде, где нужно отделить переменную составляющую от постоянной. Конденсатор пропускает переменный ток тем лучше, чем выше его частота. Подбором R и С можно добиться того, что на какой‑то определенной частоте (а значит, и на более высоких частотах) большая часть тока – скажем, 90 % и более – будет замыкаться через С и лишь 10 % через R .
Аналогично по‑разному пропускает разные частоты и RL‑фильтр. Существует множество более сложных фильтров, которые осуществляют более «строгое» разделение переменных токов разных частот.
ВОСПОМИНАНИЕ № 18. РЕЗОНАНС.
Очень интересно ведет себя при изменении частоты цепь, в которую входят и конденсатор С , и катушка L . Напряжения на этих элементах противофазны, так как ток в цепи общий. При этом Uc отстает от тока на 90°, a UL опережает его, и тоже на 90°. Поэтому можно считать, что сопротивления хс и xL действуют друг против друга и общее реактивное сопротивление равно их разности.
На какой‑то частоте – назовем ее резонансной fрез – емкостное и индуктивное сопротивления окажутся равными. Они скомпенсируют друг друга, в цепи останется только активное сопротивление Rк . Из‑за такого резкого уменьшения сопротивления резко возрастет ток, а вместе с ним возрастут напряжения на катушке и на конденсаторе.
Из условия хс = xL легко вычислить резонансную частоту fрез . При отходе от резонансной частоты ток в цепи падает, так как общее сопротивление z растет (при увеличении частоты – за счет роста xL , а при уменьшении частоты – за счет роста хс ). График, показывающий, насколько резко уменьшаются ток в цепи и напряжение на L и С при отходе от резонансной частоты, называется резонансной кривой. На резонансной частоте «с точки зрения» генератора сопротивление последовательного контура равно Rк (обычно единицы ом), а параллельного контура – Rэкв (обычно десятки килоом).
ВОСПОМИНАНИЕ № 19. ДОБРОТНОСТЬ.
Увеличение тока при резонансе будет тем более резким, чем меньше активное сопротивление в сравнении с реактивным сопротивлением xL и хс . Величина, показывающая отношение xL /Rк или (или xс /Rк ) называется добротностью Q . Добротность иногда называют множителем вольтажа, так как она показывает, во сколько раз напряжение на катушке и на конденсаторе во время резонанса превышает напряжение на активном сопротивлении. Из отношения xL /Rк – легко вывести, что добротность тем выше, чем больше соотношение L /C . Увеличение Rк всегда приводит к ухудшению добротности, а значит, к снижению резонансного тока, а также напряжения на катушке и конденсаторе и к притуплению резонансной кривой. Ухудшить добротность можно еще и иначе: подключив параллельно конденсатору (катушке) шунтирующее сопротивление. В данном случае все наоборот: чем меньше это шунтирующее сопротивление, тем сильнее «задавлен» контур, тем хуже его добротность.
ВОСПОМИНАНИЕ № 20. КОЛЕБАТЕЛЬНЫЙ КОНТУР.
Явление резонанса, и, конечно, само название «резонанс», станет более понятным, если вспомнить, что цепь из конденсатора и катушки называется колебательным контуром, что в таком контуре возникают собственные электромагнитные колебания всякий раз, когда мы передаем в него некоторое количество энергии (например, заряжаем конденсатор).
«Возникают колебания» означает, что конденсатор непрерывно обменивается энергией с катушкой – энергия электрического поля периодически переходит в энергию магнитного поля. Затем происходит обратный переход, и все повторяется сначала. При этом в цепи протекает переменный ток, частота которого зависит от индуктивности L и емкости С , подобно тому как частота собственных колебаний струны зависит от ее массы и натяжения.
Частота собственных колебаний f0 контура равна его резонансной частоте fрез , и в этом заключен глубокий смысл. Резонанс наступает именно тогда, когда контур резонирует на частоту генератора, когда генератор действует в такт с собственными колебаниями в контуре.
Собственные колебания в контуре, если их не поддерживать, постепенно затухают, причем тем быстрее, чем больше потери энергии, чем ниже добротность Q контура.
Изменяя индуктивность и емкость контура, можно довольно просто менять частоту собственных колебаний и таким образом настраивать контур в резонанс на разные частоты. Так осуществляется настройка приемника на разные станции: переключением катушек переходят с одного диапазона на другой, а плавным изменением емкости производят настройку в пределах диапазона.
Дата добавления: 2016-02-24; просмотров: 1554;