Парогазовые установки электростанций

Парогазовыми называются энергетические установки (ПГУ), в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле.

На рис. 4.10 показана принципиальная схема простейшей парогазовой установки, так называемого утилизационного типа. Уходящие газы ГТУ поступают в котёл-утилизатор - теплообменник противоточного типа, в котором за счет тепла горячих газов получают пар высоких параметров, направляемый в паровую турбину.

Рисунок 4.10. Принципиальная схема простейшей парогазовой установки

Котёл-утилизатор представляет собой шахту прямоугольного сечения, в которой размещены поверхности нагрева, образованные сребрёнными трубами, внутрь которых подаётся рабочее тело паротурбинной установки (вода или пар). В простейшем случае поверхности нагрева котла-утилизатора состоят из трёх элементов: экономайзера 3, испарителя 2 и пароперегревателя 1. Центральным элементом является испаритель, состоящий из барабана 4 (длинного цилиндра, заполняемого наполовину водой), нескольких опускных труб 7 и достаточно плотно установленных вертикальных труб собственно испарителя 8. Испаритель работает на принципе естественной конвекции. Испарительные трубы находятся в зоне более высоких температур, чем опускные. Поэтому в них вода нагревается, частично испаряется и поэтому становится легче и поднимается вверх в барабан. Освобождающееся место заполняется более холодной водой по опускным трубам из барабана. Насыщенный пар собирается в верхней части барабана и направляется в трубы пароперегревателя 1. Расход пара из барабана 4 компенсируется подводом воды из экономайзера 3. При этом поступающая вода, прежде чем испариться полностью, многократно пройдет через испарительные трубы. Поэтому описанный котёл-утилизатор называется котлом с естественной циркуляцией.

В экономайзере происходит нагрев поступающей питательной воды практически до температуры кипения. Из барабана сухой насыщенный пар поступает в пароперегреватель, где перегревается сверх температуры насыщения. Температура получаемого перегретого пара t0 всегда, конечно, меньше, чем температура газов qГ, поступающих из газовой турбины (обычно на 25 - 30 °С).

Под схемой котла-утилизатора на рис. 4.10 показано изменение температур газов и рабочего тела при их движении навстречу друг другу. Температура газов плавно уменьшается от значения qГ на входе до значения qух температуры уходящих газов. Движущаяся навстречу питательная вода повышает в экономайзере свою температуру до температуры кипения (точка а). С этой температурой (на грани кипения) вода поступает в испаритель. В нём происходит испарение воды. При этом её температура не изменяется (процесс a - b). В точке b рабочее тело находится в виде сухого насыщенного пара. Далее в пароперегревателе происходит его перегрев до значения t0.

Образующийся на выходе из пароперегревателя пар направляется в паровую турбину, где, расширяясь, совершает работу. Из турбины отработанный пар поступает в конденсатор, конденсируется и с помощью питательного насоса 6, повышающего давление питательной воды, направляется снова в котёл-утилизатор.

Таким образом, принципиальное отличие паросиловой установки (ПСУ) ПГУ от обычной ПСУ ТЭС состоит только в том, что топливо в котле-утилизаторе не сжигается, а необходимая для работы ПСУ ПГУ теплота берётся от уходящих газов ГТУ. Общий вид котла – утилизатора приведен на рис.4.11.

Рисунок 4.11. Общий вид котла – утилизатора

Электростанция с ПГУ показана на рис. 4.12, на котором изображена ТЭС с тремя энергоблоками. Каждый энергоблок состоит из двух рядом стоящих ГТУ 4 типа V94.2 фирмы Siemens, каждая из которых свои уходящие газы высокой температуры направляет в свой котёл-утилизатор 8. Пар, генерируемый этими котлами, направляется в одну паровую турбину 10 с электрогенератором 9 и конденсатором, расположенным в конденсационном помещении под турбиной. Каждый такой энергоблок имеет суммарную мощность 450 МВт (каждая ГТУ и паровая турбина имеют мощность примерно 150 МВт). Между выходным диффузором 5 и котлом-утилизатором 8 установлена байпасная (обводная) дымовая труба 12 и газоплотный шибер 6.

Рисунок 4.12. Электростанция с ПГУ

Основные преимущества ПГУ.

1. Парогазовая установка - в настоящее время самый экономичный двигатель, используемый для получения электроэнергии.

2. Парогазовая установка - самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД - ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит её тепловое загрязнение. Поэтому уменьшение тепловых выбросов ПГУ по сравнению с паросиловой примерно соответствует уменьшению расхода топлива на производство электроэнергии.

3. Парогазовая установка - очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ. Потенциально высокая маневренность ПТУ обеспечивается наличием в её схеме ГТУ, изменение нагрузки которой происходит в течение нескольких минут.

4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше. Это определяется тем, что мощность паросиловой части ПГУ составляет 1/3 от общей мощности, а ГТУ охлаждающей воды практически не требует.

5. ПГУ имеет более низкую стоимость установленной единицы мощности, что связано с меньшим объёмом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения.

ЗАКЛЮЧЕНИЕ

Главным недостатком всех тепловых электростанций является то, что все виды применяемого топлива являются невосполнимыми природными ресурсами, которые постепенно заканчиваются. Кроме того, ТЭС потребляют значительное количество топлива (ежедневно одна ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля) и являются самыми экологически «грязными» источниками электроэнергии, особенно если они работают на высокозольных сернистых топливах. Именно поэтому в настоящее время, наряду с использованием атомных и гидравлических электростанций, ведутся разработки электрических станций, использующих восполняемые или другие альтернативные источники энергии. Однако, несмотря ни на что ТЭС являются основными производителями электроэнергии в большинстве стран мира и останутся таковыми, как минимум в ближайшие 50 лет.

 

КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИИ 4

 

1. Тепловая схема ТЭЦ – 3 балла.

2. Технологический процесс производства электроэнергии на ТЭС – 3 балла.

3. Компоновка современных ТЭС – 3 балла.

4. Особенности ГТУ. Структурная схема ГТУ. КПД ГТУ – 3 балла.

5. Тепловая схема ГТУ – 3 балла.

6. Особенности ПГУ. Структурная схема ПГУУ. КПД ПГУ – 3 балла.

7. Тепловая схема ПГУ – 3 балла.

 


ЛЕКЦИЯ 5

 

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ. ТОПЛИВО ДЛЯ АЭС. ПРИНЦИП РАБОТЫ ЯДЕРНОГО РЕАКТОРА. ПРОИЗВОДСТВО ЭЛЕКТРОЭНЕРГИИ НА АЭС С ТЕПЛОВЫМИ РЕАКТОРАМИ. РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ. ДОСТОИНСТВА И НЕДОСТАТКИ СОВРЕМЕННЫХ АЭС

Основные понятия

Атомная электростанция (АЭС) это электростанция, вырабатывающая электрическую энергию путём преобразования тепловой энергии, выделяющейся в ядерном реакторе (реакторах) в результате управляемой цепной реакции деления (расщепления) ядер атомов урана. Принципиальное отличие АЭС от ТЭС только в том, что вместо парогенератора используется ядерный реактор - устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

Радиоактивные свойства у урана впервые обнаружил французский физик Антуан Беккерель в 1896 году. Английский физик Эрнест Резерфорд впервые осуществил искусственную ядерную реакцию под действием – частиц в 1919 году. Немецкие физики Отто Ган и Фриц Штрасман открыли в 1938 году, чтоделение тяжёлых ядер уранапри бомбардировке нейтронами сопровождается выделением энергии. Реальное использование этой энергии стало делом времени.

Первый ядерный реактор построен в декабре 1942 года в США группой физиков Чикагского университета под руководством итальянского физика Энрико Ферми. Впервые была реализована незатухающая реакция деления ядер урана. Ядерный реактор, названный СР-1, состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235U, замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых (медленных) нейтронах; в таких реакторах замедлителя значительно больше чем урана.

В Европе первый ядерный реактор Ф-1 был изготовлен и запущен в декабре 1946 года в Москве группой физиков и инженеров во главе с академиком Игорем Васильевичем Курчатовым. Реактор Ф-1 был набран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м в отверстиях графитовых блоков были размещены урановые стержни. Реактор Ф-1, как и СР-1, не имел системы охлаждения, поэтому работал на малых уровнях мощности: от долей до единиц ватта.

Результаты исследований на реакторе Ф-1 послужили основой проектов для промышленных реакторов. В 1948 году под руководством И. В. Курчатова начались работы по практическому применению энергии атома для получения электроэнергии.

Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в г. Обнинске Калужской области. В 1958 г. была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт (полная проектная мощность 600 МВт). В том же году развернулось строительство Белоярской промышленной АЭС, а в апреле 1964 г. генератор 1-й очереди дал электроэнергию потребителям. В сентябре 1964 года был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969 года. В 1973 году запущена Ленинградская АЭС.

В Великобритании первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 году в Колдер-Холле. Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами по производству ядерной электроэнергии являются:США (788,6 млрд. кВт ч/год), Франция (426,8 млрд. кВт ч/год), Япония (273,8 млрд. кВт ч/год), Германия (158,4 млрд. кВт ч/год) и Россия (154,7 млрд. кВт ч/год). На начало 2004 года в мире действовал 441 энергетический ядерный реактор, российское ОАО «ТВЭЛ» поставляет топливо для 75 из них.

Крупнейшая АЭС в Европе - Запорожская АЭС г. Энергодар (Украина) - 6 атомных реакторов суммарной мощностью 6 ГВт. Крупнейшая в мире АЭС - Касивадзаки-Карива (Япония) - пять кипящих ядерных реакторов (BWR) и два продвинутых кипящих ядерных реактора (ABWR), суммарная мощность которых составляет 8,2 ГВт.

В настоящее время в России работают АЭС: Балаковская, Белоярская, Билибинская, Ростовская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Смоленская.

В разработках проекта Энергетической стратегии России на период до 2030 года предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

l реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива;

l реакторы на быстрых нейтронах.

По виду отпускаемой энергии атомные станции делятся на:

l атомные электростанции (АЭС), предназначенные для выработки только электроэнергии;

l атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию.

В настоящее только в России рассматриваются варианты строительства атомных станций теплоснабжения.

АЭС не использует воздух для окисления топлива, не даёт выбросов золы, оксидов серы, углерода и т.д. в атмосферу, имеет радиоактивный фон ниже, чем на ТЭС, но, как и ТЭС, потребляет огромное количество воды для охлаждения конденсаторов.

 

Топливо для АЭС

Главное отличие АЭС от ТЭС состоит в использовании ядерного горючего вместо органического топлива. Ядерное горючее получают из природного урана, который добывают либо в шахтах (Нигер, Франция, ЮАР), либо в открытых карьерах (Австралия, Намибия), либо способом подземного выщелачивания (Канада, Россия, США). Уран широко распространён в природе, но богатых по содержанию залежей урановых руд нет. Уран содержится в различных горных породах и воде в рассеянном состоянии. Природный уран это смесь в основном неделящегося изотопа урана 238U (более 99%) и делящегося изотопа 235U (примерно 0,71%), который и представляет собой ядерное горючее (1 кг 235U выделяет энергию равную теплоте сгорания примерно 3000 т каменного угля).

Для работы реакторов АЭС требуется обогащение урана. Для этого природный уран направляется на обогатительный завод, после переработки, на котором 90% природного обеднённого урана направляется на хранение, а 10% обогащается до 3,3 - 4,4 %.

Из обогащённого урана (точнее диоксида урана UO2 или окиси-закиси урана U2O2) изготавливают тепловыделяющие элементы - ТВЭЛы - цилиндрические таблетки диаметром 9 мм и высотой 15-30 мм. Эти таблетки помещают в герметические циркониевые (поглощение нейтронов цирконием в 32,5 раза меньше чем сталью) тонкостенные трубки длиной около 4 м. ТВЭЛы собирают в тепловыделяющие сборки (ТВС) по несколько сотен штук.

Все дальнейшие процессы расщепления ядер 235U с образованием осколков деления, радиоактивных газов и т.д. происходят внутри герметичных трубок ТВЭЛов.

После постепенного расщепления 235U и уменьшения его концентрации до 1,26%, когда мощность реактора существенно уменьшается, ТВС извлекают из реактора, некоторое время хранят в бассейне выдержки, а затем направляют на радиохимический завод для переработки.

Таким образом, в отличие от ТЭС, где топливо стремятся сжигать полностью, на АЭС невозможно расщепить ядерное топливо на 100%. Поэтому на АЭС нельзя рассчитать КПД по удельному расходу условного топлива. Для оценки эффективности работы энергоблока АЭС используется КПД нетто

,

где - выработанная энергия, - выделившееся в реакторе тепло заодно и тоже время.

Подсчитанный таким образом КПД АЭС составляет 30 - 32 %, но сравнивать его с КПД ТЭС, составляющим 37 - 40 %, не вполне правомочно.

Кроме изотопа урана 235 в качестве ядерного топлива также используются:

  • изотоп урана 233 ( 233U);
  • изотоп плутония 239 ( 239Pu);
  • изотоп тория 232 (232Th) (посредством преобразования в 233U).

 








Дата добавления: 2016-02-09; просмотров: 8622;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.016 сек.