ГЕОХИМИЯ УГЛЕРОДА И ПРОИСХОЖДЕНИЕ ТВЕРДЫХ ГОРЮЧИХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ 8 страница

Кульдурское месторождение брусита расположено в Хабаровском крае и приурочено к докембрийскому ядру Хинган-Буреинского антиклинория. Это единственное в СНГ эксплуатируемое месторождение брусита. Ядро этого антиклинория сложено осадочно-метаморфическими образованиями позднепротерозойского возраста, смятыми в опрокинутую складку. На юге площади месторождения породы прорваны палеозойским интрузивом гранитоидов.

Бруситовая минерализация приурочена к экзоконтакту гранитоидного интрузива (плагиограниты и гранодиориты) с магнезиальными карбонатными породами (мурандавская свита). Карбонатные породы превращены в доломитовые мраморы, магнезиальные скарны, кальцифиры и брусититы. Главная промышленная залежь локализована в ядре складки, имеет линзовидную форму длиной до 500 м и шириной до 220 м. Мощность ее около 120 м. Внутреннее строение этой залежи осложнено прослоями, гнездами и линзами карбонатных пород. Собственно брусититы на 80–95% сложены бруситом. Основными примесями в них являются магнезит, доломит, кальцит, серпентин, изредка присутствуют кристаллы форстерита и периклаза. Брусит представлен пластинками и табличками размером до 0,1 мм. По содержанию MgO на месторождении выделяют четыре сорта промышленных руд. Образование брусита связано с процессом контактового метаморфизма под воздействием интрузии гранитоидов.

Лекция 15. СЛЮДЫ

Минералогия. Слюды представляют собой группу диметасиликатов слоистой структуры. Все они кристаллизуются в моноклинальной сингонии, обладают совершенной спайностью по пинакоиду, что позволяет расщеплять их на тончайшие пластинки. Окраска их варьирует от бесцветной до зеленовато-коричневой и почти черной. Плотность слюд – 2,7–3,1 г/см3, твердость – 2–3. Несмотря на относительно широкое распространение слюд в природе, в том числе биотита (магнезиально-железистой слюды), циннвальдита, лепидолита (литиевых слюд), основное промышленное значение имеют мусковит (калиево-алюминиевая слюда) и флогопит (калиево-магнезиальная слюда). В промышленности используется также гидрослюда – вермикулит.

Мусковит KAl2 [AlSi3O10] (OH ,F)2 – белая слюда, кристаллизующаяся в моноклинальной сингонии в виде таблитчатых и столбчатых кристаллов. Характерны чешуйчатые и листовато-зернистые агрегаты. Мусковит обычно бесцветный, зеленоватый и красный. В качестве примесей содержит Fe (1–4 %), Mg (0,2–1,1 %), Na (0,1–0,7 %), а также незначительное количество Mn, Rb, Li, Ba, Ca, W, Ti, и V. Мелкочешуйчатая разновидность мусковита – жильбертит (диаметр пластинок – первые миллиметры), тонкочешуйчатая – серицит (диаметр пластинок – десятые и сотые доли миллиметра).

Флогопит K(Mg, Fe)3 [AlSi3O10] (OH, F)2 – (флегопос) – огнеподобный (по красноватому оттенку). Минерал окрашен в коричневато-янтарный, зеленовато-коричневый и другие цвета. Основными примесями в нем являются Na, Mn, Cs, Ba, Rb, Li.

Вермикулит (Mg, Fe+2, Fe+3)3 . [(Si, Al)4O10](OH)3 . 4H2O характеризуется переменным количеством железа, алюминия и магния. Цвет бронзовый, желтовато-коричневый до темного. В нем наблюдается примесь Ca, Mn и Ti, а также следы Na, K, Ni, Cr, Ba и других элементов. Твердость вермикулита – 2,1–2,8, плотность – 2,5 г/см3.

Физические свойства. Важнейшими физическими свойствами мусковита и флогопита, обусловливающими их промышленое применение, являются: 1) весьма совершенная спайность, позволяющая получать тончайшие (до нескольких микронов) и прочные гибкие листочки; 2) относительно высокая химическая стойкость (особенно у мусковита); 3) термическая стойкость, т. е. способность сохранять при нагревании физические свойства (у мусковита достигает 500–600 о, у флогопита – 1000 оС); 4) высокая электрическая прочность, определяемая напряжением, при котором происходит пробой диэлектрика; 5) прозрачность мусковита и некоторых разностей флогопита.

Основным промышленным свойством вермикулита является его способность вспучиваться при нагревании свыше 200 оС с увеличением объема в 8–12 раз (предельно в 30 раз). Кроме того, важным свойством его является высокая способность к катионному обмену.

Применение в промышленности. Главными потребителями мусковита и флогопита являются электротехническая и радиотехническая промышленность. В этих отраслях промышленности используется около 85–90 % всей добычи качественного сырья (листовая слюда, слюдяные изделия из щипаной слюды). Литовая слюда применяется также в качестве вставок в окна плавильных печей, бытовых приборов, в очках.

Отходы от обработки слюды (скрап), дробленая и молотая слюда используются при изготовлении толя, рубероида и других мягких кровельных изделий, для производства слюдинита и слюдопласта, огнестойких материалов, красок, смазок и т. д.

Вспученный вермикулит находит применение в строительстве как наполнитель звуко- и теплоизоляционных штукатурок и легких бетонов, используется в авиационной и автомобильной промышленности, а также для очистки промышленных вод и улавливания газов.

Типы руд. Состав руд определяется присутствием основных минералов – мусковита, флогопита, вермикулита и др. Они могут быть преимущественно мусковитовыми, флогопитовыми, вермикулитовыми или литиевыми.

Многие месторождения слюд являются комплексными: одновременно со слюдами могут добываться полевые шпаты, кварц, пегматит и др.

Общетехнические требования. При оценке качества слюд исключительное значение придается физическим свойствам минералов и определению выхода отдельных сортов. Ведущим признаком при этом является размер кристаллов слюды, наличие и характер дефектов в кристаллах, особенности химического состава и другие показатели. Из дефектов кристаллов слюды особенно часто встречаются: 1) мелкие включения других минералов; 2) газово-жидкие включения; 3) волнистость, морщинистость и зажимистость (сплетение слоев, затрудняющих их расщепление); 4) ельчатость (волнистость и трещиноватость в радиальном направлении); 5) трещиноватость; 6) клиновидность (постепенное утолщение пластинок).

Оценка содержания слюды в рудах производится по промежуточным продуктам, получаемым в процессе добычи (забойного сырца) и первичной ее переработки – промышленному сырцу и колотой слюде. Забойным сырцом называются отделенные от породы кристаллы слюды с площадью пластин не менее 4 см2. Содержание забойного сырца выражается в килограммах на кубический метр породы.

На горных предприятиях в результате очистки забойного сырца от поверхностных загрязнений получают так называемый промышленный сырец – кристаллы слюды любой толщины (но не менее 0,1 см), имеющие с обеих сторон полезную (бездефектную) площадь не менее 4 см2. Полученные пластины разделяют на три группы: площадью более 100, от 50 до 100 и от 4 до 50 см2. Выход промышленного сырца выражается в процентах от массы забойного сырца.

В процессе дальнейшей обработки слюду раскалывают на пластины или подвергают щипке. Полученный продукт называют листовой слюдой (sheet mica). Отходы производства листовой слюды – скрап (grоund mica). Рудничный и фабричный скрап переводят в дробленую (диаметр частиц 160–15 000 мкм) или молотую (диаметр частиц около 300 мкм) слюду.

Добыча. Месторождения слюд эксплуатируются, как правило, открытым способом. Основные запасы этого вида минерального сырья сосредоточены в России, Индии, Малагасийской Республике, США, Канаде, Бразилии и ЮАР. Общемировая добыча слюд составляет около 300 тыс т/год, в том числе доля листовой слюды менее 7 тыс т. Крупнейшим мировым продуцентом скрапа является США. Мировая добыча вермикулита находится на уровне 500 тыс. т. Причем более 90 % приходится на долю США и ЮАР.

Условия образования месторождений слюд. Мусковит и флогопит являются продуктами эндогенных процессов, характеризовавшихся высокими температурами, большим давлением и различным химизмом сред. В условиях высокой активности глинозема происходило формирование мусковита, а в условиях повышенной активности магния и железа – флогопита и биотита.

Образование мелкочешуйчатого мусковита осуществлялось обычно при кристаллизации различных магматических пород. Однако промышленные месторождения связаны только с телами аляскитовых гранитов (содержание слюды до 15 % и более).

Крупнокристаллический листовой мусковит формировался, как правило, в составе тел гранитных пегматитов, распространенных в полях метаморфических докембрийских толщ амфиболитовой фации регионального метаморфизма. Крупные кристаллы мусковита являются результатом воздействия постмагматических пневматолито-гидротермальных флюидов, метаморфизовавших пегматиты с разрушением полевых шпатов и появлением так называемого кварц-мусковитового комплекса:

3KAlSi3O8 + H2O = H2KAl3Si3O12 + 6SiO2 + K2O

ортоклаз мусковит кварц раствор

2NaAlSi3O8 + KAlSi3O8 + H2O = H2KАl3Si3O12 + 6SiO2 + Na2O.

альбит ортоклаз мусковит кварц раствор

Формирование промышленной флогопитовой минерализации, связанной с массивами ультраосновных щелочных пород, происходило в результате инфильтрационного замещения ультрабазитовых пород и окружающих их магматических метасоматитов.

Вермикулит образовывался в процессе гидратации флоготипа и биотита в зоне гипергенеза при формировании коры выветривания.

Геолого-промышленные типы месторождений. Несмотря на многообразие условий формирования, промышленные типы месторождений слюд немногочисленны. В настоящее время главное значение имеют следующие геолого-промышленные типы месторождений:

1. Согласные пластовые и четковидные залежи, жильные и неправильной формы тела мусковитовых плагиоклазовых и плагиоклаз-микроклиновых гранитных пегматитов в древних высокометаморфизованных толщах. Размеры этих рудных тел по простиранию достигают до сотен – первых тысяч метров, по мощности – от 2–5 до 30–50 м. К этому типу относятся месторождения Мамско-Чуйской и Карело-Кольской провинций в России, в штатах Бихар, Раджастан и Андхра-Прадеш в Индии, в Бразилии, Зимбабве и других странах.

2. Линзы, гнезда, жилы, неправильной формы метасоматические залежи крупнокристаллического флогопита в карбонатных комплексах ультраосновных щелочных пород. Размер рудных тел и залежей составляет десятки и сотни метров. Руды нередко являются комплексными; наряду с флогопитом из них могут извлекать апатит, магнетит, бадделеит и другие виды минерального сырья. Наиболее характерные месторождения – Ковдор, Гулинское, Маган в России, Якупиранга в Бразилии, Лулекоп в ЮАР и др.

3. Линзовидные, пластообразные, гнездовые, жильные и столбообразные залежи крупнокристаллического флогопита среди диопсидовых, кварц-диопсидовых, скаполит-диопсидовых пород, пироксен-роговообманковых сланцев, доломитов, кальцифиров в составе древних высокометаморфизованных гранито-гнейсовых комплексов. К этому типу принадлежат месторождения Алданской слюдоносной провинции в России, Памирской провинции в Таджикистане, ряд месторождений в пределах Канадского кристаллического щита.

4. Пластовые, линзовидные, жило- и штокообразные залежи вермикулита в корах выветривания массивов ультраосновных (пироксенитовых) и ультраосновных щелочных пород (месторождение Ковдор в России, Либби в США и др.).

Геология месторождений слюд. В США основные месторождения слюды расположены в штате Северная Каролина. Одним из наиболее крупных среди них является месторождение мелкочешуйчатого мусковита Спрус Пайн. Оно разрабатывается с 1863 г. Район месторождения сложен слюдистыми и амфиболитовыми гнейсами и сланцами, а также подчиненными доломитовыми сланцами докембрийского возраста. Все эти породы рассечены небольшими раннепалеозойскими телами аляскитовых гранитов и пегматитов.

Источником слюды являются в основном пегматиты. Слюдоносные пегматиты здесь более мелкие, чем в других регионах мира, и в среднем составляют 1,5–10,0 м в поперечнике. Они приурочены к кристаллическим сланцам, а не к аляскитам. Иногда пегматитовые тела расположены близко друг от друга и, как правило, залегают согласно простиранию пластов кристаллических сланцев. Пегматиты характеризуются зональным строением. Пегматитовые тела с размером в поперечнике менее 2 м разрабатываются целиком (производится валовая выемка), а более крупные – разрабатываются выборочно по зонам. Содержание слюды в добытом минеральном сырье составляет 2–6 %, на богатых участках достигает 30–40 %. Только 5–8 % добытой слюды пригодно для получения листовой слюды, а остальные 92 % или более используются в виде слюдяного скрапа.

На этом месторождении объектом отработки являются также аляскитовые граниты, которые в приповерхностных условиях подверглись каолинизации. В качестве побочных продуктов получают полевой шпат, кварц и каолин. Запасы мелкочешуйчатого мускавита до глубины 15 м оцениваются в 50 млн т, а полевого шпата – в 200 млн т. Основная масса мелкочешуйчатого мусковита, добываемого на месторождении Спрус Пайн, используется в качестве инертных наполнителей промывочных жидкостей при бурении скважин.

Мамско-Чуйская слюдоносная провинция находится на севере Иркутской области и связана с гигантским поясом докембрийских кристаллических гнейсов и сланцев. Длина этого пояса около 150 км, ширина – 20 км. Здесь широко распространены пегматиты, проявлены дайки гранит-аплитов и аплитов. В разрезе мамской свиты, вмещающей слюдоносные пегматиты, главную роль играют кварциты, биотитовые и гранат-слюдяные плагиогнейсы и сланцы, известково-силикатные породы, графитовые и скаполитовые сланцы, а также мраморы. Все эти породы смяты в брахиформные и линейные складки северо-восточного простирания.

Морфология слюдоносных пегматитовых тел весьма разнообразна: жилы, линзы, штоки, всевозможные неправильные тела. Размеры их могут достигать нескольких сотен метров в длину при мощности от нескольких метров до первых десятков метров. Минеральный состав пегматитов следующий: плагиоклаз, микроклин-пертит, кварц, биотит и мусковит.

Выделяется несколько разновидностей мусковита. В пегматитах блоковой (пегматоидной) структуры обычно развит крупнокристаллический мусковит-I с размерами кристаллов пластин от 0,2–0,3 до 1–1,5 м. Такие кристаллы имеют, как правило, дефекты (ельчатость, трещиноватость и др.). По границам зон в пегматитовом теле либо в виде отдельных гнезд появляется мусковит-II, тесно связанный с так называемым кварц-мусковитовым комплексом. Характерны кристаллы пластинчатой и столбчатой формы размером до 15–30 см. Эта разновидность мусковита является наиболее ценным сырьем. Мусковит-III (трещинная слюда) образуется по биотиту, обычно выполняет трещины и характеризуется относительно невысоким качеством.

Содержание забойного сырца на участках, обогащенных мусковитом-I, достигает 100–300 кг/м3, а мусковитом-II – 50–30 кг/м3. В пегматитовых телах постоянно присутствует полевой шпат, который является ценным и весьма дефицитным керамическим сырьем.

Лекция 16. АЛМАЗЫ

Минералогия. Алмаз – природная полиморфная модификация углерода, кристаллизующегося в кубической сингонии. Характерны октаэдрические, кубические и тетраэдрические кристаллы. Грани кристаллов алмаза редко бывают плоскими и гладкими, чаще они выпуклые и покрыты фигурами роста или растворения в виде разнообразной формы выступов и углублений. Имеет идентичный с графитом химический состав. Алмаз, благодаря более плотному расположению своих атомов в кристаллической решетке, резко отличается от него своими свойствами: обладает наибольшей твердостью из всех известных в природе минералов (10 по шкале Мооса), высоким показателем преломления (2,42), сильной дисперсией (0,057–0,063) и углом полного внутреннего отражения (24 о 50 /). Алмаз обладает совершенной спайностью по октаэдру, что обусловливает его хрупкость. Благодаря своим оптическим свойствам он имеет так называемый алмазный блеск и исключительную игру цветов.

Алмаз нерастворим в кислотах и щелочах, а поэтому является весьма устойчивым минералом. Он хорошо проводит тепло и плохо – электричество. Плотность алмаза составляет 3,52 г/см3, температура плавления – 3 700–4 000 о С, температура сгорания на воздухе – 850–1 000 о С. При нагревании до 1 200 – 1 500 о С без доступа воздуха алмаз переходит в графит. В ультрафиолетовых и рентгеновских лучах и при ионной бомбардировке он люминесцирует.

Алмазы бывают бесцветные и прозрачные («чистой воды»), бесцветные с голубым, зеленым, желтым, розовым, коричневым и другими оттенками и окрашенные («фантазийные») – синие, зеленые, желтые, красные. В кристаллах алмаза нередко наблюдаются различные примеси: твердые, жидкие и газообразные. Наиболее часто встречающиеся твердые примеси – графит, пироп, магнезит, оливин и др.

В метеоритах и импактитах иногда наблюдается редкая мелкокристаллическая гексагональная разновидность алмаза – лонсдэлеит. Цвет его сероватый, блеск алмазоподобный, плотность 3,2 г/см3.

Виды алмазного сырья. Существует два вида алмазного сырья: ювелирные и технические алмазы. Ювелирные алмазы – это относительно крупные кристаллы совершенной формы, окраски, исключительной прозрачности, без трещин, включений и т. д. Масса их измеряется в каратах (1 карат равен 0,2 г). Минимальная масса ювелирных алмазов составляет 0,05 карата. Крупными считаются камни более 10 каратов. Если масса алмаза превышает 50 каратов, то ему присваивается название. Самый крупный в мире алмаз Куллинан (масса 3 106 карат, размеры 10 х 6,5 х 5 см) голубого цвета был обнаружен в 1905 г. в южноафриканской трубке Премьер.

Алмазы технические разделяются на четыре сорта: борт, баллас, карбонадо и конго. Борт – это мелкие, сильноокрашенные, трещиноватые или разрушенные кристаллы, которые непригодны для ювелирных изделий. Баллас – очень прочные и крепкие зернистые агрегаты темных кристаллов с радиальной структурой. Карбонадо («уголь» или «черный алмаз») – очень крепкий, прочно связанный агрегат мелких (обычно черного цвета) кристалликов алмаза. Конго – наиболее низкосортные мелкие алмазы, пригодные лишь в качестве абразивного материала.

Дефицит алмазного сырья привел в 1950-х гг. к появлению их синтетических аналогов. Мелкие зерна технических алмазов получают из графита при высокой температуре и давлении в присутствии металлических катализаторов. Производство их в значительных масштабах налажено в США, России, ЮАР, Японии, Швеции и некоторых других странах.

Применение в промышленности. Ювелирные алмазы используются для изготовления всевозможных ювелирных изделий. Крупные алмазы распиливают, подвергают огранке и шлифовке. Наиболее распространенные формы огранки – бриллиантовая, ступенчатая и др. Ограненные алмазы носят название бриллиантов.

Технические алмазы применяются для изготовления буровых коронок, необходимых при бурении твердых горных пород. Они используются для изготовления всевозможных сверл, резцов, подшипников, фильер для волочения проволоки и т. д. В настоящее время более 75 % всех технических алмазов идет на получение порошка и на изготовление шлифовальных кругов, дисковых пил и др. Объемы и области применения алмазов в технике возрастают из года в год. Они используются в электронной, авиационной, космической и других отраслях.

Ресурсы и запасы. Ресурсы алмазов в мире (без России) на 1.01.1997 г. составляют, по данным ГНПП «Аэрогеология» Министерства природных ресурсов Российской Федерации, более 4,8 млрд каратов. Ресурсы России достигают не менее половины мировых.

Данные по запасам алмазов как в целом по миру, так и по отдельным странам крайне ограничены и всегда носят самый общий характер. По оценке «Аэрогеологии», общие запасы алмазов в мире составляют более 1,2 млрд каратов. Наиболее крупными запасами этого вида минерального сырья обладают Ангола, Ботсвана, ЮАР, Канада и Австралия (табл. 8).

Добыча и производство. Основная часть алмазов добывается из кимберлитов посредством шахт и открытым способом из россыпей. В Намибии организована добыча алмазов из подводных морских россыпей.

В настоящее время около 70 % стоимости добытых в мире алмазов приходится на Африку. Странами-лидерами по добыче природных алмазов (млн кар) являются: Австралия – 41,99; Заир – 22,24; Ботсвана – 17,71; ЮАР – 9,88.

Генетические типы промышленных месторождений. Алмазы встречаются в месторождениях двух генетических типов: 1) собственно магматических и 2) россыпях.

Таблица 8

Ресурсы и общие запасы природных алмазов (АП), в том числе ювелирных (АЮ) (млн каратов), и среднее содержание АП в рудах коренных месторождений (кар/т) и россыпях (кар/м3) [8]

Страна, часть света Ресурсы Запасы общие АП Их % от мира Запасы общие АЮ Их % от мира Содержание в коренных Содержание в россыпях
Азия 5,5 0,45 2,38 0,56
Индия 0,2 0,02 0,18 0,04 0,12 0,2
Индонезия 0,3 0,02 0,2 0,05 - 0,4
Китай 0,41 0,47 0,3
Африка 3243,1 893,85 73,95 343,9 81,36 -
Ангола 19,85 28,39 0,2 0,5
Ботсвана 33,09 28,39 0,8
Габон 0,1 0,05 0,04 0,01
Гана 1,16 0,47 1,15
Гвинея 0,08 0,8 0,19 0,22
Заир 4,14 0,95 20-,72
Зимбабве 0,74 5,5 1,3 0,28
Кот д,Ивуар 0,5 0,04 0,4 0,09 0,34
Лесото 0,66 0,95 0,3
Либерия 1,5 0,12 0,24 0,25
Мали
Намибия 12,5 1,03 2,84 0,05
Свазиленд 0,3 0,02 0,2 0,05 0,13
Окончание табл.
Сьерра-Леоне 0,41 0,95 0,4 0,05
Танзания 0,33 0,71 0,1
ЦАР 0,25 0,47 0,36
ЮАР 15,38 0,85 0,15
Америка 130,75 10,82 46,4 10,98
Бразилия 0,91 0,95 0,5
Венесуэла 0,41 0,24 0,2
Гайана 0,5 0,04 0,2 0,05 0,2
Канада 9,27 9,46 1,9
Колумбия 0,5 0,04 0,2 0,05 0,2
США 1,75 0,14 0,24 0,1
Австралия 178,1 14,78 7,1 0,8

 

Собственно магматические месторождения алмазов тесно связаны с продуктами платформенного магматизма – кимберлитами и лампроитами, представляющими своеобразные изверженные породы ультраосновного состава. Они выполняют так называемые трубки взрыва – конусообразные тела, которые в плане обычно имеют эллипсовидную форму. В строении трубок взрыва различают кратерную, диатремовую и канальную части. Кратерные части трубок обычно выполнены обломочным материалом, поступившим с их бортов. В разрезах многих трубок они обычно эродированы. Диатремовые части нередко сложены кимберлитами или лампроитами нескольких генераций и их туфами, а также обломками самых различных пород, прорванных трубками взрыва. Канальные части выполнены массивными или флюидальными кимберлитами с отчетливым ороговикованием в экзоконтактах.

Кимберлиты обычно представляют собой серпентинизированную и карбонатизированную ультраосновную породу с повышенным содержанием щелочей (калий преобладает над натрием), глинозема и титана и имеющую порфировую либо кластически порфировидную структуру с вкрапленниками оливина в окружении тонкозернистого агрегата серпентина, талька, кальцита, перовскита, флогопита, магнетита, ильменита и других минералов. Характерно присутствие ксенолитов – вмещающих пород, автолитов – округлых включений кимберлитов ранних генераций, а также типоморфных акцессорных минералов (пиропа, хромдиопсида, хромшпинелида, пикроильменита, энстатита и др.). В лампроитах значительно повышается роль калия и появляется лейцит.

Вблизи земной поверхности кимберлит подвергается выветриванию и в условиях теплого влажного климата разрушается, гидратируется и приобретает при этом темную синевато-зеленоватую окраску («синяя земля»). В процессе дальнейшего разрушения и окисления кимберлит превращается в дезинтегрированную землистую массу, окрашенную гидрооксидами железа в желтоватый цвет («желтая земля») с зернами граната, хромшпинелидов и других устойчивых минералов, в том числе алмаза. В южноафриканских трубках мощность зоны «синей земли» может достигать 60 м, а зоны «желтой земли» – до 20 м. В условиях арктического климата элювий кимберлитов представлен слоем щебенки мощностью до 3–5 м.

Размеры кимберлитовых трубок разнообразны – от нескольких десятков до нескольких сотен метров в поперечнике. Самой крупной является кимберлитовая трубка Мвадуи в Танзании, размер которой на поверхности составляет 2,52 х 1,07 км. Глубина разработки кимберлитовых трубок составляет сотни метров, изредка до 1000 м. Очень богатые трубки содержат 3–4 карата на 1 т кимберлита. Содержание алмазов в трубках с глубиной, как правило, снижается. В ЮАР минимальное промышленное содержание алмазов в трубках составляет около 0,1 кар/т. Наиболее высокие концентрации алмазов обычно наблюдаются в самой верхней выветрелой зоне («желтой земле»). Промышленные алмазоносные трубки известны в ЮАР (Премьер, Де-Бирс, Кимберли, Ягерсфонтейн, Хелам и др.), Лесото (Као, Летсенг-ла-тераи), Ботсване (Орапа), России (Мир, Зарница, Удачная и др.), Австралии (АК-1, Эллендейл-6, Калвиньярдах, Скерринг, Хадфилс и др.) и ряде других стран.








Дата добавления: 2016-02-04; просмотров: 731;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.023 сек.