Общая характеристика математических методов в научных исследованиях
Решение практических задач математическими методами осуществляется путем реализации этапов следующего алгоритма: разработка математической модели; выбор метода проведения исследования математической модели; анализ полученного математического результата.
Математическая модель− система формул, функций, уравнений, средствами которых описывается то или иное явление, процесс, объект в целом. При разработке модели нужно учитывать все реально существующие связи факторов и параметров, хотя при этом нельзя забывать о возможности последующего решения математической модели. Следует прибегать к каким-либо упрощениям, допущениям, аппроксимациям.
Установление общих характеристик объекта позволяют выбрать математический аппарат, на базе которого и строится математическая модель. Для описания объектов с большим количеством параметров возможно разделение объекта на подсистемы.
Не стоит забывать, что особенное место на этапе выбора вида математической модели занимает описание входных сигналов в выходные характеристики объекта.
Если характер изменения исследуемого показателя не известен, то ставится поисковый эксперимент и предпочтение отдается той математической формуле, которая дает наилучшее совпадение с данными поискового эксперимента. Результаты поискового эксперимента и априорный информационный массив позволяют установить схему взаимодействия объекта с внешней средой по соотношению входных и выходных величин.
Процесс выбора математической модели объекта заканчивается ее предварительным контролем. При этом осуществляются следующие виды контроля: размерностей; порядков; характера зависимостей; экстремальных ситуаций; граничных условий; математической замкнутости; физического смысла; устойчивости модели.
10. Оптимизация в исследовании (О) - (от лат. optimus-наилучший) - понимают целенаправленную деятельность, заключающуюся в получении наилучших результатов при соответствующих условиях. Постановка задачи О. предполагает наличие ее объекта, набора независимых параметров (переменных), описывающих данную задачу, а также условий (часто наз. ограничениями), характеризующие приемлемые значения независимых переменных, которые и образуют модель рассматриваемой системы. Еще одной обязательным условием описания оптимизационной задачи служит мера "качества", носящая название критерия оптимизации и зависящая от переменных О. Решение оптимизационной задачи - поиск определенного набора значений переменных, которому отвечает оптимизационное значение критерия О.
Описанные и построенные модели реального объекта – важнейший этап оптимизационного исследования, так как он определяет практическую ценность получаемого решения и возможность его реализации.
Процесс оптимизации с использованием модели можно рассматривать как метод отыскания оптимального решения для реального объекта без непосредственного экспериментирования с самим объектом. «Прямой» путь, ведущий к оптимальному решению, заменяется «обходным», включающим построение и оптимизацию модели, а также преобразование полученных результатов в практически реализуемую форму. При формировании такой модели следует учитывать характеристики объекта, которые должны быть отражены в модели, а менее существенные особенности в модель можно не включать. Необходимо сформулировать логически обоснованные допущения, выбрать форму представления модели, уровень ее детализации и метод реализации на ЭВМ. Все это относятся к этапу построения модели. Модели можно упорядочить по степени адекватности описания поведения реального объекта. Таким образом, качество модели нельзя оценивать ни по структуре, ни по форме. Единственным критерием такой оценки может служить лишь достоверность полученных на модели примеров поведения реального объекта.
Дата добавления: 2016-02-02; просмотров: 1436;