Солнечные элементы на основе кремния - технология. Очистка кремния. Siemens-процесс

Производственная цепочка начинается с диоксида кремния (кремнезема). Кремнезем широко распространен в природе в виде песка, кварца и глины. Превращение исходного кремнезема в высокочистый кремний происходит через следующие основные этапы:

1) восстановление SiO2 до Si в электродуговой печи с графитовыми электродами;

2) получение промежуточного химического продукта, например трихлорсилана;

3) очистка дистилляцией или другими способами;

4) восстановление промежуточного химического продукта до чистого кремния в высокочистых условиях;

5) отливка в формы, удобные для последующего выращивания кристаллов;

6) выращивание кристалла, предусматривающее дополнительную очистку за счет сегрегации определенных примесей.

В результате карботермического восстановления диоксида кремния в дуговой печи при температуре 1800 C получается технический (металлургический) кремний, который затем проходит очистку химическими или физическими методами.

В настоящее время наиболее распространен метод производства поликремния с использованием процесса и реактора Сименс (Siemens). Сименс-процесс − это процесс химического осаждения поликремния из газовой фазы (chemical vapor deposition, CVD).

Исходные материалы (сырье):

1. Металлургический кремний (MG-Si),

2. Хлороводород (HCl),

3. Кремниевые стержни для осаждения,

4. Высокочистый водород (H2).

Хлористый водород обычно получают прямым синтезом газообразного хлора и водорода, сжигаемых в печах в соотношении, близком к стехиометрическому.

Технологическая цепочка:

1. Синтез трихлорсилана. Первой стадией технологического процесса очистки кремния является синтез трихлорсилана методом гидрохлорирования металлургического кремния при температуре 563-623 K. При этом протекают две основные реакции:

Si (т.) +3 HCl (г.) → SiHCl3 (г.) + H2 (г.)

Si (т.) +4 HCl (г.) → SiCl4 (г.) + 2H2 (г.)

Кроме трихлорсилана (SiHCl3) и тетрахлорсилана (SiCl4) в ходе гидрохлорирования также образуются дихлорсилан (SiH2Cl2) и монохлорсилан (SiH3Cl), но их концентрации на один-два порядка меньше.

Синтез трихлорсилана осуществляют в аппаратах горизонтального и вертикального типов, в которых происходит реакция размельченного кремния с газообразным хлороводородом. Наибольшее распространение получили аппараты с псевдоожиженным слоем.

2. Предварительная очистка и конденсация. Выходящая из реактора паро-газовая смесь содержащая водород, хлороводород, пары трихлорсилана, тетрахлорсилана, примеси дихлорсилана, монохлорсилана, полисиланхлоридов и кремниевую пыль проходит «сухую» и «мокрую» очистку. «Сухая» очистка смеси от частиц кремния осуществляется в циклонах и специальных фильтрах. Сущность «мокрой» очистки заключается в том, что паро-газовая смесь проходит (барботирует) через слой трихлорсилана и тетрахлорсилана. При этом из паровой фазы в жидкую переходят высококипящие примеси (хлориды металлов, полисиланхлориды). Далее очищенная смесь охлаждается и конденсируется в нескольких последовательно соединенных теплообменниках.

Несконденсировавшаяся часть паро-газовой смеси, содержащая 80-90 % водорода, 9-11 % хлороводорода, около 4-8 % трихлорсилана и порядка 2 % тетрахлорсилана поступает в блок финишного улавливания. Сконденсированные хлорсиланы (трихлорсилан-конденсат) поступают в сборники жидкого продукта, откуда перекачиваются насосами для разделения и очистки.

3. Ректификационное разделение. Разделение смеси хлорсиланов проводят в ректификационных колоннах.

4. Водородное восстановление. Выделенный трихлорсилсан подвергается водородному восстановлению. Суть процесса заключается в высокотемпературном восстановлении водородом кремния из трихлорсилана SiHCl3, что описывается следующей реакцией [2]:

SiHCl3 (г.)+H2 (г.)→Si (т.)+3 HCl (г.) (t = 1350 K)

Согласно данным [2,3,4], эта реакция является ключевой особенностью Siemens-процесса. Для осаждения используется реактора стержневого типа. Осаждение кремния из трихлорсилана происходит на затравочных кремниевых U-образных стержнях, нагретых до температуры порядка 1350 К. Вследствие высокого градиента температуры в реакторе, помимо указанной, протекают еще несколько реакций, основным побочным продуктом которых является тетрахлорсилан (SiCl4):

SiHCl3 (г.)+ HCl (г.) →SiCl4 (г.)+ H2 (г.)

В результате, в случае повторного использования оставшегося трихлорсилана, до 2/3 его объема преобразуется в тетрахлорсилан, что можно отобразить результирующей реакцией:

SiHCl3 (г.) → Si (т.) + HCl (г.) + 2SiCl4 (г.)+ H2 (г.)

Образующийся тетрахлорсилан не используется в Siemens-процессе, для компенсации экономических потерь тетрахлорсилан продают, так как он используется не только в производстве «солнечного» кремния, но и в других областях промышленности. Кроме того, для повышения процента повторного использования продуктов, применяют реакцию гидрирования в реакторе с псеводоожиженным слоем катализатора (fluidized bed reactor, FBR), называемом также реактором с кипящим слоем:

SiCl4 (г.) + 2H2 (г.)+ Si (т.) → SiHCl3 (г.) (катализатор – Сu).








Дата добавления: 2016-02-02; просмотров: 1169;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.