ДЕЙСТВИЕ РАБОЧЕГО ТЕЛА НА ЛОПАТКИ
Турбомашина (турбина) является двигателем, в котором теплота рабочего тела — пара или газа — последовательно преобразуется в кинетическую энергию струи, а затем в механическую работу.
Вытекающий из сопла поток рабочего тела, обладающий значительной кинетической энергией, действует на лопатки с силой, которая зависит от формы их поверхности (рис. 20.1).
Расчеты по уравнению количества движения показывают, что при прочих равных условиях, например при заданной скорости истечения со и расходе рабочего тела /п, с наибольшей силой поток будет воздействовать на лопатку, форма которой обеспечивает его поворот на 180° (рис. 20.1, б). Если позволить лопаткам перемещаться под действием струи, то движение газа по схеме (рис. 20.1, б) обеспечит при одинаковой во всех схемах скорости и наибольшую мощность, равную произведению действующей на лопатку силы на скорость ее перемещения. Отсюда, в частности, следует, что для получения максимальной работы поток должен не ударяться о поверхность, а обтекать ее плавно, без завихрений.
Но использовать наиболее выгодный (с точки зрения получения максимальной мощности) профиль лопаток для теплового двигателя непрерывного действия, например турбомашины, невозможно, так как практически не удается при вращательном движении диска с лопатками подать на них газ в направлении, совпадающем с плоскостью вращения. Поэтому в турбинах струя газа, вытекающего из неподвижного сопла, подается на лопатки, изогнутые под некоторым углом к плоскости вращения (рис. 20.1, в), причем по конструктивным соображениям этот угол не удается сделать меньше 11 —16° (в ряде случаев его принимают равным 20—30°).
Рассмотренный принцип действия потока на поверхности различных форм называется активным, в отличие от реактивного, когда сила создается за счет реакции струи, вытекающей из сопла (рис. 20.1, г). Реактивная сила, приложенная к цилиндру, направлена согласно третьему закону Ньютона в сторону, противоположную истечению газов. С такой же силой действует струя на поверхность (активный принцип, рис. 20.1, а), но при реактивном способе конструкция теплового двигателя получается более рациональной, так как совмещаются сопловой и двигательный аппараты.
АКТИВНЫЕ ТУРБИНЫ
Турбины, в которых весь располагаемый теплоперепад преобразуется в кинетическую энергию потока в соплах, а в каналах между рабочими лопатками расширения не происходит (давление рабочего тела не меняется), называются активными или турбинами равного давления.
В простейшей активной турбине рабочее тело поступает в сопло / (или группу сопл), разгоняется в нем до высокой скорости и направляется на рабочие лопатки 2 (рис. 20.2). Усилия, вызванные поворотом струи в каналах рабочих лопаток (см. рис. 20.1, в), вращают диск 3 и связанный с ним вал 4. Диск с закрепленными на нем рабочими лопатками и валом называется ротором. Один ряд сопл и один диск с рабочими лопатками составляют ступень.
Приращение кинетической энергии на выходе из сопла можно определить по формуле (5.11):
(20.1)
где Со, ho — скорость и энтальпия потока перед соплом; c\^, h\T — теоретическая скорость и энтальпия потока на выходе из сопла.
Если принять, что перед соплами скорость со = 0, получим
(20.2)
где А/гт — располагаемый теплоперепад, соответствующий скорости cit.
В реальных условиях в результате трения и завихрений при течении потока часть кинетической энергии направленного движения молекул превращается в энергию неупорядоченного движения молекул, что повышает энтальпию рабочего тела за соплом, уменьшает располагаемый теплоперепад и скорость потока:
(20.3)
где φс — коэффициент скорости сопла, для сопловых аппаратов современных турбин φс = 0,95 — 0,98.
На лопатках рабочего колеса кинетическая энергия потока преобразуется в работу. При входе на лопатку окружная составляющая скорости потока совпадает с направлением движения лопатки, а при выходе — противоположна ей (рис. 20.2). Поэтому абсолютная скорость потока на выходе много меньше, чем на входе.
Движущийся поток действует на рабочие лопатки с силой Р. Проекция этой силы на ось машины Рг (осевая сила) воспринимается упорными подшипниками, предотвращающими смещение ротора вдоль оси, а проекция на направление окружной скорости Ри (окружная сила) вызывает вращение ротора
Одноступенчатая активная турбина была построена Лавалем в 1883г. (рис. 20.3).
Пар поступает в одно или несколько сопл 4, приобретает в них значительную скорость и направляется на рабочие лопатки 5. Отработанный пар удаляется через выхлопной патрубок 8. Ротор турбины, состоящий из диска 3, закрепленных на нем лопаток и вала 1, заключен в корпус 6. В месте прохода вала через корпус установлены переднее 2 и заднее 7 лабиринтовые уплотнения, предотвращающие утечки пара. Так как весь располагаемый теплоперепад срабатывается в одной ступени, то скорости потока в соплах оказываются большими. При расширении, например, перегретого пара, имеющего параметры 1 МПа и 500 °С, до давления 10 кПа теплоперепад округленно равен 980 кДж/кг, что соответствует скорости потока 1400 м/с. При таких скоростях потока неизбежны большие потери и, самое главное, недопустимые по условиям прочности лопаток окружные скорости в них. Поэтому одноступенчатые турбины Лаваля имеют ограниченную мощность (до 1 МВт) и низкий КПД. Все крупные турбины делают многоступенчатыми. На рис. 20.4 показана схема активной многоступенчатой турбины, которая включает несколько последовательно расположенных по ходу пара ступеней, сидящих на одном валу. Ступени отделены друг от друга диафрагмами, в которые встроены сопла.
В таких турбинах давление падает при проходе пара через сопла и остается постоянным на рабочих лопатках. Абсолютная скорость пара в ступени, называемой ступенью давления, то возрастает — в соплах, то снижается — на рабочих лопатках. Так как объем пара по мере его расширения увеличивается, то геометрические размеры проточной части по ходу пара возрастают. Если общий телоперепад (h0-hвых) распределить поровну между 2 ступенями давления, то скорость истечения пара из сопл каждой ступени, м/с, Отсюда следует, что применением ступеней давления можно достичь умеренных значений с1, обеспечив высокий КПД.
РЕАКТИВНЫЕ ТУРБИНЫ
Первая модель двигателя, использующего реактивную силу, была построена Героном Александрийским за 120 лет до н э (рис. 20.5).
При истечении пара из сопл здесь возникают реактивные силы, вращающие систему против часовой стрелки. Ступень турбины, по модели Герона, представляла бы собой вращающийся диск с соплами, к которым необходимо организовать непрерывный подвод рабочего тела. Ввиду сложности конструирования таких ступеней, а тем более многоступенчатых турбин, чисто реактивные турбины не создавались Реактивный принцип нашел широкое применение лишь в реактивных двигателях летательных аппаратов (ракет, самолетов и др.).
Практически реактивными называются турбины, у которых располагаемый теплоперепад преобразуется в кинетическую энергию потока не только в соплах, но и на рабочих лопатках.
Отношение теплоперепада на рабочих лопатках Δhл к располагаемому теплоперепаду Δhт называется степенью реактивности:
Ω=Δhл/Δhт (20.4)
При Q = 0 (чисто активная ступень) весь располагаемый теплоперепад, а следовательно, и перепад давлений срабатывается в сопловом аппарате, превращаясь в скоростной напор. Именно такая ступень рассмотрена на рис. 20.2, 20.3. При Q=l (чисто реактивная ступень) весь располагаемый теплоперепад срабатывался бы на рабочих лопатках.Современные мощные турбины выполняют многоступенчатыми с определенной степенью реактивности, чаще и на рабочих лопатках. Ступень срабатывает лишь часть общего перепада давления на турбине, и при большом их числе разность давлений в отдельной ступени получается небольшой, а скорости потока — умеренными. При степени реактивности и = 0,5 сопловые и рабочие лопатки имеют одинаковую форму. Более того, один и тот же профиль лопаток может быть использован во всех ступенях турбины, и только длина лопаток изменяется в соответствии с увеличением объема рабочего вещества по мере понижения давления. Это удобно с точки зрения их изготовления.
На левой половине рисунка 20.6 показан корпус или цилиндр высокого давления (ЦВД) конденсационной трехкорпусной трубины мощностью 300 МВт на сверхкритические параметры пара с промежуточным перегревом пара до 565 °С. ЦВД представляет собой двухстенную литую конструкцию. Пар сначала поступает в сопловую коробку 4, расположенную во внутреннем корпусе 3, проходит через ступень 6 с двумя лопатками и пять ступеней давления справа налево Выходя из внутреннего корпуса, пар поворачивается на 180°, проходит между внутренним и наружным / корпусами и поступает далее на шесть ступеней давления При этом он омывает и охлаждает внутренний корпус, а также частично разгружает его стенки, испытывающие внутреннее давление Во внутреннем корпусе диафрагмы 2 крепятся непосредственно в стенке, а в наружном — в промежуточных обоймах 5 Обоймы позволяют организовать отборы пара для регенерации
После промежуточного перегрева в котле пар с параметрами 3,53 МПа и 565 °С поступает в корпус среднего, а затем низкого давления (справа)
Дата добавления: 2016-02-02; просмотров: 1325;