Импульс силы. Импульс тела
Основные динамические величины: сила, масса, импульс тела, момент силы, момент импульса.
Сила – это векторная величина, являющаяся мерой действия на данное тело других тел или полей.
Сила характеризуется:
· Модулем
· Направлением
· Точкой приложения
В системе СИ сила измеряется в ньютонах.
[F] = H
Для того чтобы понять, что такое сила в один ньютон, нам нужно вспомнить, что сила, приложенная к телу, изменяет его скорость. Кроме того, вспомним о инертности тел, которая, как мы помним, связана с их массой. Итак,
Один ньютон – это такая сила, которая меняет скорость тела массой в 1 кг на 1 м/с за каждую секунду.
Примерами сил могут служить:
· Сила тяжести – сила, действующая на тело в результате гравитационного взаимодействия.
· Сила упругости – сила, с которой тело сопротивляется внешней нагрузке. Ее причиной является электромагнитное взаимодействие молекул тела.
· Сила Архимеда – сила, связанная с тем, что тело вытесняет некий объем жидкости или газа.
· Сила реакции опоры – сила, с которой опора действует на тело, находящееся на ней.
· Сила трения – сила сопротивления относительному перемещению контактирующих поверхностей тел.
· Сила поверхностного натяжения – сила, возникающая на границе раздела двух сред.
· Вес тела – сила, с которой тело действует на горизонтальную опору или вертикальный подвес.
И другие силы.
Сила измеряется с помощью специального прибора. Этот прибор называется динамометром (рис. 1). Динамометр состоит из пружины 1, растяжение которой и показывает нам силу, стрелки 2, скользящей по шкале 3, планки-ограничителя 4, которая не дает растянуться пружине слишком сильно, и крючка 5, к которому подвешивается груз.
Рис. 1. Динамометр (Источник)
На тело могут действовать многие силы. Для того чтобы правильно описать движение тела, удобно пользоваться понятием равнодействующей сил.
Равнодействующая сил – это сила, действие которой заменяет действие всех сил, приложенных к телу (Рис. 2).
Зная правила работы с векторными величинами, легко догадаться, что равнодействующая всех сил, приложенных к телу – это векторная сумма этих сил.
Рис. 2. Равнодействующая двух сил, действующих на тело
Кроме того, поскольку мы с вами рассматриваем движение тела в какой-либо системе координат, нам обычно выгодно рассматривать не саму силу, а ее проекцию на ось. Проекция силы на ось может быть отрицательной или положительной, потому что проекция – это величина скалярная. Так, на рисунке 3 изображены проекции сил, проекция силы – отрицательна, а проекция силы – положительна.
Рис. 3. Проекции сил на ось
Итак, из этого урока мы с вами углубили свое понимание понятия силы. Мы вспомнили единицы измерения силы и прибор, с помощью которого измеряется сила. Кроме того, мы рассмотрели, какие силы существуют в природе. Наконец, мы узнали, как можно действовать в случае, если на тело действует несколько сил.
Масса, физическая величина, одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства. Соответственно различают Массу инертную и Массу гравитационную (тяжелую, тяготеющую).
Понятие Масса было введено в механику И. Ньютоном. В классической механике Ньютона Масса входит в определение импульса (количества движения) тела: импульс р пропорционален скорости движения тела v, p = mv (1). Коэффициент пропорциональности - постоянная для данного тела величина m - и есть Масса тела. Эквивалентное определение Массы получается из уравнения движения классической механики f = ma (2). Здесь Масса - коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a. Определенная соотношениями (1) и (2) Масса называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше Масса тела, тем меньшее ускорение оно приобретает, т. е. тем медленнее меняется состояние его движения (тем больше его инерция).
Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения Масса этих тел: m1 : m2 : m3... = а1 : а2 : а3...; если одну из Масс принять за единицу измерения, можно найти Массу остальных тел.
В теории гравитации Ньютона Масса выступает в другой форме - как источник поля тяготения. Каждое тело создает поле тяготения, пропорциональное Массе тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна Массе тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой законом тяготения Ньютона:
(3)
где r - расстояние между телами, G - универсальная гравитационная постоянная, a m1 и m2 - Массы притягивающихся тел. Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли: Р = mg (4).
Здесь g = G*M/r2 - ускорение свободного падения в гравитационном поле Земли, а r » R - радиусу Земли. Масса, определяемая соотношениями (3) и (4), называется гравитационной массой тела.
В принципе ниоткуда не следует, что Масса, создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная Масса и гравитационная Масса пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г.Галилея, установившего, что все тела на Земле падают с одинаковым ускорением. А.Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности. Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890-1906) прецизионная проверка равенства инертной и гравитационной Масс была произведена Л.Этвешем, который нашел, что Массы совпадают с ошибкой ~ 10-8. В 1959-64 годах американские физики Р.Дикке, Р.Кротков и П.Ролл уменьшили ошибку до 10-11, а в 1971 году советские физики В.Б.Брагинский и В.И.Панов - до 10-12.
Принцип эквивалентности позволяет наиболее естественно определять Массу тела взвешиванием.
Первоначально Масса рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчеркивает аддитивность Массы - Масса тела равна сумме Массы его частей. Масса однородного тела пропорциональна его объему, поэтому можно ввести понятие плотности - Массы единицы объема тела.
В классической физике считалось, что Масса тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения Массы (вещества), открытый М.В.Ломоносовым и А.Л.Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма Масс исходных компонентов равна сумме Масс конечных компонентов.
Понятие Масса приобрело более глубокий смысл в механике специальной теории относительности А. Эйнштейна, рассматривающей движение тел (или частиц) с очень большими скоростями - сравнимыми со скоростью света с ~ 3 1010см/сек. В новой механике - она называется релятивистской механикой - связь между импульсом и скоростью частицы дается соотношением:
(5)
При малых скоростях (v << c) это соотношение переходит в Ньютоново соотношение р = mv. Поэтому величину m0 называют массой покоя, а Массу движущейся частицы m определяют как зависящий от скорости коэффициент пропорциональности между p и v:
(6)
Имея в виду, в частности, эту формулу, говорят, что Масса частицы (тела) растет с увеличением ее скорости. Такое релятивистское возрастание Массы частицы по мере повышения ее скорости необходимо учитывать при конструировании ускорителей заряженных частиц высоких энергий. Масса покоя m0 (Масса в системе отсчета, связанной с частицей) является важнейшей внутренней характеристикой частицы. Все элементарные частицы обладают строго определенными значениями m0, присущими данному сорту частиц.
Следует отметить, что в релятивистской механике определение Массы из уравнения движения (2) не эквивалентно определению Массы как коэффициента пропорциональности между импульсом и скоростью частицы, так как ускорение перестает быть параллельным вызвавшей его силе и Масса получается зависящей от направления скорости частицы .
Согласно теории относительности, Масса частицы m связана с ее энергией Е соотношением:
(7)
Масса покоя определяет внутреннюю энергию частицы - так называемую энергию покоя Е0 = m0с2. Таким образом, с Массой всегда связана энергия (и наоборот). Поэтому не существует по отдельности (как в классической физике) закона сохранения Массы и закона сохранения энергии - они слиты в единый закон сохранения полной (т. е. включающей энергию покоя частиц) энергии. Приближенное разделение на закон сохранения энергии и закон сохранения Массы возможно лишь в классической физике, когда скорости частиц малы (v << c) и не происходят процессы превращения частиц.
В релятивистской механике Масса не является аддитивной характеристикой тела. Когда две частицы соединяются, образуя одно составное устойчивое состояние, то при этом выделяется избыток энергии (равный энергии связи) DЕ, который соответствует Массе Dm =DE/с2. Поэтому Масса составной частицы меньше суммы Масс образующих его частиц на величину DE/с2 (так называемый дефект масс). Этот эффект проявляется особенно сильно в ядерных реакциях. Например, Масса дейтрона (d) меньше суммы Масс протона (p) и нейтрона (n); дефект Масс Dm связан с энергией Еg гамма-кванта (g), рождающегося при образовании дейтрона: р + n -> d + g, Eg = Dmc2. Дефект Массы, возникающий при образовании составной частицы, отражает органическую связь Массы и энергии.
Единицей Массы в СГС системе единиц служит грамм, а вМеждународной системе единиц СИ - килограмм. Масса атомов и молекул обычно измеряется в атомных единицах массы. Масса элементарных частиц принято выражать либо в единицах Массы электрона me, либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, Масса электрона составляет 0,511 Мэв, Масса протона - 1836,1 me, или 938,2 Мэв и т. д.
Природа Массы - одна из важнейших нерешенных задач современной физики. Принято считать, что Масса элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория Массы еще не создана. Не существует также теории, объясняющей, почему Масса элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.
В астрофизике Масса тела, создающего гравитационное поле, определяет так называемый гравитационный радиус тела Rгр = 2GM/c2. Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R =< Rгр. Звезды таких размеров будут невидимы; поэтому их назвали "черными дырами". Такие небесные тела должны играть важную роль во Вселенной.
Импульс силы. Импульс тела
Понятие импульса было введено еще в первой половине XVII века Рене Декартом, а затем уточнено Исааком Ньютоном. Согласно Ньютону, который называл импульс количеством движения, – это есть мера такового, пропорциональная скорости тела и его массе. Современное определение: импульс тела – это физическая величина, равная произведению массы тела на его скорость:
= m
Прежде всего, из приведенной формулы видно, что импульс – величина векторная и его направление совпадает с направлением скорости тела, единицей измерения импульса служит:
[ ] = [ кг· м/с]
Рассмотрим, каким же образом эта физическая величина связана с законами движения. Запишем второй закон Ньютона, учитывая, что ускорение есть изменение скорости с течением времени:
Налицо связь между действующей на тело силой, точнее, равнодействующей сил и изменением его импульса. Величина произведения силы на промежуток времени носит название импульса силы. Из приведенной формулы видно, что изменение импульса тела равно импульсу силы.
Какие эффекты можно описать с помощью данного уравнения (рис. 1)?
Рис. 1. Связь импульса силы с импульсом тела (Источник)
Стрела, выпускаемая из лука. Чем дольше продолжается контакт тетивы со стрелой (∆t), тем больше изменение импульса стрелы (∆ ), а следовательно, тем выше ее конечная скорость.
Два сталкивающихся шарика. Пока шарики находятся в контакте, они действуют друг на друга с равными по модулю силами, как учит нас третий закон Ньютона. Значит, изменения их импульсов также должны быть равны по модулю, даже если массы шариков не равны.
Проанализировав формулы, можно сделать два важных вывода:
1. Одинаковые силы, действующие в течение одинакового промежутка времени, вызывают одинаковые изменения импульса у различных тел, независимо от массы последних.
2. Одного и того же изменения импульса тела можно добиться, либо действуя небольшой силой в течение длительного промежутка времени, либо действуя кратковременно большой силой на то же самое тело.
Согласно второму закону Ньютона, можем записать:
∆t = ∆ = ∆ / ∆t
Отношение изменения импульса тела к промежутку времени, в течение которого это изменение произошло, равно сумме сил, действующих на тело.
Проанализировав это уравнение, мы видим, что второй закон Ньютона позволяет расширить класс решаемых задач и включить задачи, в которых масса тел изменяется с течением времени.
Если же попытаться решить задачи с переменной массой тел при помощи обычной формулировки второго закона Ньютона:
= m ,
то попытка такого решения привела бы к ошибке.
Примером тому могут служить уже упоминаемые реактивный самолет или космическая ракета, которые при движении сжигают топливо, и продукты этого сжигаемого выбрасывают в окружающее пространство. Естественно, масса самолета или ракеты уменьшается по мере расхода топлива.
МОМЕНТ СИЛЫ - величина, характеризующая вращательный эффект силы; имеет размерность произведения длины на силу. Различают момент силы относительно центра (точки) и относительно оси.
M. с. относительно центра О наз. векторная величина M0, равная векторному произведению радиуса-вектора r, проведённого из O в точку приложения силы F, на силуM0 = [rF] или в др. обозначениях M0 = r F (рис.). Численно M. с. равен произведению модуля силы на плечо h, т. е. на длину перпендикуляра, опущенного из О на линию действия силы, или удвоенной площади
треугольника, построенного на центре O и силе:
Направлен вектор M0 перпендикулярно плоскости, проходящей через O и F. Сторона, куда направляется M0, выбирается условно (M0 - аксиальный вектор). При правой системе координат вектор M0 направляют в ту сторону, откуда поворот, совершаемый силой, виден против хода часовой стрелки.
M. с. относительно оси z наз. скалярная величина Mz, равная проекции на ось z вектора M. с. относительно любого центра О, взятого на этой оси; величину Mz можно ещё определять как проекцию на плоскость ху, перпендикулярную оси z, площади треугольника OAB или как момент проекции Fxy силы F на плоскость ху, взятый относительно точки пересечения оси z с этой плоскостью. T. о.,
В двух последних выражениях M. с. считается положительным, когда поворот силы Fxy виден с положит. конца оси z против хода часовой стрелки (в правой системе координат). M. с. относительно координатных осей Oxyz могут также вычисляться по аналитич. ф-лам:
где Fx, Fy, Fz - проекции силы F на координатные оси, х, у, z - координаты точки А приложения силы. Величины Mx, My, Mz равны проекциям вектора M0 на координатные оси.
Если система сил имеет равнодействующую, то момент этой равнодействующей относительно любого центра (или оси) равен сумме моментов всех сил системы относительно того же центра (оси) (см. Вариньона теорема). Понятие о M. с. является одним из осн. понятий механики.
Момент импульса материальной точки относительно точки O определяется векторным произведением
, где — радиус-вектор, проведенный из точки O, — импульс материальной точки.
Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z.
Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.
Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):
.
Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:
.
Векторное произведение радиуса-вектора материальной точки на ее импульс: называют моментом импульса , этой точки относительно точки О (рис.5.4)
. Вектор иногда называют также моментом количества движения материальной точки. Он направлен вдоль оси вращения перпендикулярно плоскости, проведенной через векторы и и образует с ними правую тройку векторов (при наблюдении из вершины вектора видно, что вращение по кратчайшему расстоянию от к происходит против часовой стрелки).
Векторную сумму моментов импульсов всех материальных точек системы называют моментом импульса (количества движения) системы относительно точки О:
Векторы и взаимно перпендикулярны и лежат в плоскости перпендикулярной оси вращения тела. Поэтому . Сучетом связи линейных и угловых величин
и направлен вдоль оси вращения тела в ту же сторону, что и вектор .
Таким образом.
Момент импульса тела относительно оси вращения
т.е.
(5.9) |
Следовательно, момент импульса тела относительно оси вращения равен произведению момента инерции тела относительно той же оси на угловую скорость вращения тела вокруг этой оси.
<== предыдущая лекция | | | следующая лекция ==> |
| | Закон электромагнитной индукции Фарадея. |
Дата добавления: 2016-01-29; просмотров: 5510;