Электрохимические генераторы

 

Работа электрохимических генераторов основана на принципе прямого преобразования химической энергии в электрическую. Возникновение ЭДС в гальваническом элементе связано со способностью металлов посылать свои ионы в раствор в результате молекулярного взаимодействия между ионами металла и молекулами (и ионами) раствора.

Рассмотрим явления, происходящие при опускании цинкового электрода в раствор сернокислого цинка (ZnSO4 ). Молекулы воды стремятся окружить положительные ионы цинка в металле. В результате действия электростатических сил положительные ионы цинка переходят в раствор сернокислого цинка. Этому переходу способствует большой дипольный момент воды.

Наряду с процессом растворения цинка происходит и обратный процесс возвращения в цинковый электрод положительных ионов цинка при достижении ими электрода в результате теплового движения.

По мере перехода положительных ионов в раствор увеличивается отрицательный потенциал электрода, препятствующий этому переходу. При некотором потенциале металла наступает динамическое равновесие, т. е. два встречных потока ионов (от электрода в раствор и обратно) будут одинаковы. Этот равновесный потенциал называется электрохимическим потенциалом металла относительно данного электролита.

Важное техническое приложение гальванические элементы нашли в аккумуляторах, где вещество, расходующееся при отборе тока, предварительно накапливается на электродах при пропускании через них в течение некоторого времени тока от постоянного источника (при зарядке). Применение аккумуляторов в энергетике затруднено вследствие малого запаса активного химического горючего, не позволяющего получать непрерывно электроэнергию в больших количествах. Кроме того, для аккумуляторов характерна малая удельная мощность.

Большое внимание во многих странах мира уделяется непосредственному преобразованию химической энергии органического топлива в электрическую, осуществляемому в топливных элементах. В этих преобразователях энергии можно получить более высокие значения КПД, чем у тепловых машин. В 1893 г. немецкий физик и химик Нернст вычислил, что теоретический КПД электрохимического процесса превращения химической энергии угля в электрическую равен 99,75 %.

На рисунке 9.10 показана принципиальная схема водородно-кислородного топливного элемента. Электроды в топливном элементе выполнены пористыми. На аноде происходит переход положительных ионов водорода в электролит. Оставшиеся электроны создают отрицательный потенциал и во внешней цепи перемещаются к катоду. Атомы кислорода, находящиеся на катоде, присоединяют к себе электроны, образуя отрицательные ионы, которые, присоединяя из воды атомы водорода, переходят в раствор в виде ионов гидроксила ОН. Ионы гидроксила, соединяясь с ионами водорода, образуют воду. Таким образом, при подводе водорода и кислорода происходит реакция окисления горючего ионами с одновременным образованием тока во внешней цепи. Так как напряжение на выводах элемента невелико (порядка 1 В), то элементы последовательно соединяют в батареи. КПД топливных элементов очень высок. Теоретически он близок к единице, а практически он равен 60 - 80 %.

Использование водорода в качестве топлива сопряжено с высокой стоимостью эксплуатации топливных элементов, поэтому изыскиваются возможности применения других, более дешевых, видов топлива, в первую очередь природного и генераторного газа. Однако удовлетворительные скорости протекания реакции окисления газа происходят при высоких температурах 800 - 1200К, что исключает применение в качестве электролитов водяных растворов щелочи. В этом случае можно использовать твердые электролиты с ионной проводимостью.

В настоящее время широко ведутся работы над созданием эффективных высокотемпературных топливных элементов. Пока удельная мощность топливных элементов все еще невелика. Она в несколько раз ниже, чем у двигателей внутреннего сгорания. Однако успехи электрохимии и конструктивные усовершенствования топливных элементов в недалеком будущем сделают возможным применение топливных элементов в автотранспорте и энергетике. Топливные элементы бесшумны, экономичны и у них отсутствуют вредные отходы, загрязняющие атмосферу.

 








Дата добавления: 2016-01-26; просмотров: 689;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.