Роль энергии в истории человечества
Весь длительный процесс освоения энергии человеком можно разделить, хотя бы для удобства обсуждения, на четыре‑пять этапов [по Алексееву, 1983, с модификациями].
Первый – этап мускульной энергии, он уходит в глубь тысячелетий и длится до V–VII в. н. э. Одним из самых замечательных достижений этого периода является овладение огнем: вначале поддержание костра, а затем добывание огня и запасание первого энергетического ресурса – дров.
Второй этап (VII–XVII вв.) относится к использованию энергии движущей воды и ветра, он связан с изготовлением специальных, порой очень непростых сооружений, требовавших коллективного труда и творчества. Техническая основа разработок этого времени – колесо.
Третий этап (с XVIII в. до начала XX в.) соответствует все более широкому применению «движущей силы огня», источником которого является химическая энергия топлива, накопленного в былых биосферах: каменного угля, нефти, газа, горючих сланцев и т. д.
Четвертый этап (с «XX в. наравне») не зря называют «золотым веком электричества». Благодаря его открытию, а главным образом созданию многочисленных приборов и движителей для человечества оказалось возможным освоить и энергетически обеспечить практически все уголки нашей планеты, более или менее пригодные для жизни.
Пятый этап развития энергетики, основанной на использовании энергии распада атома и синтеза ядра, практически станет определяющим только в следующем веке или (более осторожно) в следующем тысячелетии. Рассмотрим развитие энергетики человека в историческом плане.
Вспомним, что иссушение климата и уменьшение площадей лесов в конце третичного – начале четвертичного периода вынудили предков‑гоминид перейти от древесного к наземному существованию. Только социальный образ жизни, развитие систем коммуникации, обучения и приготовления примитивных орудий защиты и труда позволили некоторым линиям гоминид, не имевшим ни густого меха, ни мощных когтей, твердо обосноваться в степях и саваннах, используя естественные укрытия и пещеры как убежища. Примитивные орудия труда, обнаруженные археологами вместе с человеческими останками, относятся к дальней дали веков. (Например, орудия, найденные при раскопках вблизи древнего греческого города Птолемаис в Македонии, изготовлены более 3 млн лет назад.) Конечно, первые орудия очень примитивны. Это камень с острым сколом, дубина, очищенная от сучьев, и позднее – копье, сильное смертоносное оружие. Но со временем они все более совершенствовались, с их помощью первобытный человек мог охотиться на диких животных, выкапывать съедобные корни, строить укрытия из деревьев. Сто лет назад были проведены сравнения, какой топор лучше: каменный или железный. Оказалось, что каменный топор ненамного хуже; дерево толщиной 17 см было им срублено за 7 мин, а железным – за 5.
Самым великим событием в развитии человечества на этом этапе было «приручение» огня. Точной даты нам не узнать, да ее, видимо, и не было: в различных регионах земли это происходило неоднократно и в разное время.
Недаром в мифах и легендах всех народов мира говорится о божественном происхождении огня. Огню очень долго поклонялись как божеству; не умея его добывать, старались сохранить в одном месте на долгие годы. В одной из пещер вблизи Пекина археологи обнаружили следы костра, который непрерывно горел в течение 500 тыс. лет на одном месте! Огонь зажигали от лесных пожаров, возникших от ударов молний, реже –от извержения вулканов.
Следующий огромный шаг в овладении человеком силами природы – это умение добывать огонь. Ф. Энгельс писал, что добывание огня трением впервые доставило человеку господство над определенной силой природы и тем окончательно отделило человека от животного царства. Постоянное применение огня резко изменило жизнь человека. Учеными доказано, что уже неандертальцы ели жареное мясо. Приготовление хлеба, вареного и жареного мяса существенно облегчило пищеварение, высвободив время и энергию для активных действий (т. е. в соответствии с ЭПИР доля активной энергии у человека возрастала по сравнению с другими млекопитающими; непосредственное увеличение потока использованной энергии по ЭПЭР в связи с использованием огня очевидно).
Однако прямые энергетические возможности человека определялись главным образом мощью его мускулов и крепостью костей. Средняя мощность мужчины около 0,1 л.с. Первыми машинами, преобразующими и запасающими энергию, по‑видимому, можно считать самодействующие ловушки. В них использовалась сила тяжести животных (ямы) либо упругостные силы отогнутых ветвей, согнутых деревьев. Самый яркий пример облегченного варианта такой «машины» с дистанционным действием – это лук и стрелы.
На протяжении 3–4 млн лет технологическая эволюция человека протекала довольно медленно. Сотни тысяч лет, согласно данным раскопок в разных регионах Земли, традиции изготовления каменных орудий сохранялись почти неизменными. Но около 40 тыс. лет назад скорость эволюции значительно возросла. Неоценимую помощь человеку, прежде всего по энергетике, оказали первые прирученные животные и среди них – собака. Она помогала и выследить добычу, и охранять жилье, могла использоваться как тягловая сила, а в тяжелых случаях – и как подручный запас еды. Приручение различных животных, а с ними и разведение домашнего скота резко изменило весь образ жизни человека: от простого собирания «благ» дикой природы он перешел к их производству. Постепенно вместо собирания злаков он начинает их охранять, выращивать, а потом и сеять.
Десять – двенадцать тысяч лет назад с переходом к земледелию и скотоводству произошла так называемая неолитическая революция. Местом наиболее раннего ее проявления считается Передняя Азия. В этом регионе были не только необходимые дикорастущие злаки, но и животные, легко поддающиеся одомашниванию,– свиньи, козы, овцы, коровы. Сезонный сбор урожая однолетних растений вынудил человека делать запасы зерна, фуража, а отсюда и появилась возможность содержать животных. Потребовались новые орудия труда, не только каменные топоры, но серпы, мотыги, потребовались могучие быки, чтобы тянуть повозки с урожаем или перевозить домашний скарб при переселении с места на место, когда земля переставала родить. Неолитическая эволюция в течение нескольких тысячелетий распространилась по всему миру.
Используя действие огня, человек научился выплавлять из руды твердые металлы, на смену каменному веку пришел бронзовый, а за ним и железный. Неолитическая эволюция и прогресс энергетики привели к тому, что впервые в истории производство пищи и орудий труда стало постоянно превышать минимальные жизненные потребности. Появился прибавочный продукт, а с ним – собственность и государство. Уже не требовалось каждому человеку участвовать в добывании и производстве пищи. Появились квалифицированные специалисты, ремесленники, целиком занятые изготовлением определенных орудий труда и производства. Возросла роль знания, умения, специализации, расширился обмен товарами и идеями, улучшалось энергетическое обеспечение.
Изобретение колеса было одним из самых значительных изобретений этого времени (5–6 тыс. лет назад). Можно сказать, что первые государства и почти вся техническая цивилизация въехали в историю «на колесах». С их развитием потребовались новые источники энергии – простых мускульных сил не хватало. Государство, этот «аппарат насилия», позволяло решать задачу просто: заставить работать на себя другого, сделать его своим рабом, использовать его силу, брать от него больше, чем давать (таков только один из аспектов развития рабовладения – энергетический).
Мускульная сила рабов резко увеличила энергетические возможности рабовладельческих государств. Меньшинство захватило орудия производства, власть и стало эксплуатировать большинство, используя его труд и энергию,– образовались классы рабов и рабовладельцев. С помощью рабов прокладывались каналы для орошения земель и для отвода воды с затопляемых территорий. Создавались искусственные плотины, изменяющие течение крупных рек. Широко известны грандиозные сооружения, «чудо света», техники и рабовладения того времени,– египетские пирамиды. Удивляет количество труда, вложенного в них. Пять тысяч лет назад за 20–30 лет была построена одна из самых знаменитых пирамид – пирамида египетского фараона Хеопса. Ее высота соответствует высоте современного 50‑этажного дома, длина 230 м. Ее возвели сто тысяч рабов из 2,3 млн блоков со средним весом 1,5 т, а некоторые – до 10–15 т. Щели между блоками меньше 0,5 см, грани пирамиды точно обращены на четыре стороны света. Какой яркий пример огромной энергетической мощности государства и... бессмысленного ее применения.
Труд рабов широко использовался в ткачестве, которое постепенно становилось одним из наиболее распространенных ремесел вплоть до создания ткацких мастерских – первых коллективов специалистов. На рабском труде было основано и тяжелое горное дело.
Рабство с течением времени стало тормозить процесс развития энергетики, как источник энергии оно изживало себя. Человек стал искать новые источники, и, естественно, что он обратил внимание на те, что всегда были перед ним: текущую воду и ветер. Мы знаем, что источником этой энергии, движителем круговорота воды и воздуха является поток солнечной энергии, но для древних людей первопричина не была особенно важной. Они уже давно эпизодически пользовались силой движущейся воды и ветра. Так мы переходим к описанию второго этапа развития энергетики, используемой человеком.
Этот этап, как и полагается по законам диалектики развития, давно вызрел в недрах первого периода. Доподлинно доказано старыми документами, что парус применялся не менее 4 тыс. лет назад, а водяное колесо, вращаемое потоком воды, насчитывает более чем двухтысячелетнюю историю.
Но широкое использование энергии воды и ветра относится к фазе повсеместного перемещения народов в Европе, к V–VII вв. н.э.
С гибелью Римской империи и с фактическим затуханием рабовладения физический труд и энергия стали цениться гораздо дороже и старая энергетическая основа – мускульная сила потеряла ведущую роль. Становление нового феодального строя связано и с развитием новой техники. Если первое документальное упоминание о водяной мельнице относится к IV в., то к XI в. их насчитывались десятки тысяч. Добавим к этому, что если лошадь в технической установке заменяла 10 рабов, то хорошее водяное или ветряное колесо – до 100. Ветряные мельницы, хотя и появились позднее водяных, тоже быстро получили широкое распространение, но из‑за непостоянства энергоносителя – ветра не могли заменить более непрерывно действующие водяные. Водяные колеса совершенствовались со временем, и к XI в. для их работы использовалась даже сила приливов (в Англии, Франции и позднее, при Иване Грозном, в России, на берегу Белого моря).
Средние века как раз и характеризуются переходом от ручного производства к машинному. Создаются прядильные и ткацкие станки, маслобойные и бумагоделательные машины, металлический сельскохозяйственный инвентарь, лесопильные установки. На все это требовалось огромное количество металла, а добыча руды и угля все усложнялась. Из‑за выработки древесного угля, необходимого при выплавке стали (до изобретения кокса), сводились на нет огромные площади лесов. В наиболее промышленно развитой Англии практически не оставалось лесов. Можно говорить о первом серьезном экологическом кризисе, связанном с развитием промышленности.
Но гораздо более серьезным и угрожающим был энергетический кризис. Всем новым машинам нужны были мощные, постоянно действующие движители, независимые ни от положения, ни от сезона в отличие от ветряных и водяных колес. Идея надежного двигателя недаром занимала умы мыслителей того времени.
Своеобразным отражением энергетического кризиса являются многочисленные в то время попытки создать вечный двигатель. Видя кажущееся «самодвижение» воды и воздуха (реки, приливы – отливы, ветра), легко можно было представить, что хитроумная комбинация машин способна к вечному движению, а следовательно, и к постоянному совершению работы.
Естественно, что наибольшее число «изобретений» относилось к использованию энергии воды и воздуха. Среди них наиболее популярны комбинации спирального подъемника воды – архимедова винта и обычного водяного колеса, которые вращают друг друга; колесо, вращающееся под действием неуравновешенных грузов; и т. д. Попытки создания вечного двигателя крайне заманчивы. Они не прекращаются до сих пор, правда, уже на других сочетаниях движущих сил. Еще в 1775 г. Парижская академия приняла решение не рассматривать утопических проектов вечных двигателей из‑за невозможности их создания. Это – крупное достижение науки того времени, очень важна его гносеологическая роль. По сути оно означает отказ от самодвижения во всех формах, необходимость учета внешней накачки энергией всех преобразователей энергии. Не мешает напомнить, что идея самодвижения и саморазвития любых систем автоматически приводит, с энергетической точки зрения, и к возможности существования самоисточников энергии, т. е. вечных двигателей, чего, как известно, в природе не обнаружено.
Выход из энергетического кризиса средневековья был найден с помощью приручения «движущей силы огня», использования перехода химической формы энергии в тепловую, применения силы сжатого пара. Это – третий этап развития энергетики человечества. И опять мы не знаем, когда была построена первая паровая машина. Может быть, это был эолопил Герона или одна из первых паровых пушек Архимеда. Хотя древние греки и были знакомы с действием паровых машин, но объяснения принципа их действия тогдашняя схоластическая наука дать не могла. Не была известна сущность происходящих при этом физических процессов (считалось, например, что воздух превращается в пар), а без этого создать серьезную, эффективно работающую машину было нельзя.
Только научная революция XVI–XVII вв., вызванная требованиями развивающихся капиталистических отношений, привела к возникновению опытной науки, сформулировавшей правила разработки и создания разнообразных энергетических движителей.
На стыке XVII и XVIII вв. были созданы первые длительно работающие паровые машины, вначале пригодные лишь для откачивания воды из шахт (одной из самых тяжелых задач того времени). Они были громоздкими и неэффективными, с к.п.д. не выше 0,3%! Фактически это были паровые насосы. Настоящая паровая машина непрерывного действия была разработана в Англии знаменитым изобретателем Джеймсом Уаттом во второй половине XVIII в. (Параллельно в России был разработан двухцилиндровый паровой двигатель умельцем‑механиком с Урала Иваном Ползуновым, но со смертью автора изобретение было забыто.) В Англии, этой мастерской мира того времени, где две трети населения работали в промышленности, паровые машины распространились необычайно быстро; к началу XIX в., т. е. через 25 лет после изобретения Уатта, их насчитывалось более 1500, они заменяли работу 180 тыс. лошадей. За Англией поспешили континентальная Европа и Северная Америка. В России первая после двигателя И. Ползунова машина заработала на Урале в 1799 г. Паровая машина, по словам Энгельса, оказалась поистине интернациональным изобретением. И это неудивительно, так как она была единственным в то время средством решения проблемы энергетического кризиса. Паровые машины повышенного давления можно было поставить на колеса и получить самодвижущиеся по рельсам повозки; довольно быстро по рекам и внутренним водоемам пошли пароходы, а в 1838 г. Атлантический океан пересекли два парохода, использующие только паровую тягу. Таким образом, к середине XIX в. паровые машины практически везде пришли на смену естественным источникам энергии – воде и ветру. Наступил «золотой век пара», который, казалось бы, мог длиться очень долго. Но... чем больше возможностей, тем быстрее растут потребности. Быстрый количественный рост числа паровых машин, их непрерывные модификации (хорошая аналогия с ЭПЭР и ЭПИР в биологии) уже за хронологических полвека не смогли удовлетворять потребности в энергетических мощностях экспоненциально растущей экономики. Перечислим самые существенные недостатки паровых машин: низкий к.п.д. при увеличении числа и мощности машин приводил к громадному расходу топлива; передача движения от машины к станкам осуществлялась через целые системы трансмиссий, сложные и ненадежные; атмосфера городов с тысячами заводских дымовых труб становилась непригодной для жизни горожан.
В недрах XIX в. зрели новые способы преобразования и использования энергии, но только в XX в. электричество вступило в права основного энергодателя, энергопреобразователя и энергопереносчика. Существует рассказ о том, что когда Майкла Фарадея, открывшего явление электромагнитной индукции, спросили: «А зачем это надо?», он ответил: «Не знаю, но когда‑нибудь вы это обложите налогом». Имелось в виду, что это явление будет широко применяться на практике. Но вряд ли и сам великий экспериментатор и все исследователи, изучавшие природу электрических и магнитных явлений, могли предвидеть, как широко войдет электричество в нашу экономику, в быт каждой семьи. Применение электричества резко повысило энергообеспеченность человечества, в том числе и удельную. Электрическая энергия имеет большие преимущества перед другими видами: она быстро и с малыми потерями передается на большие расстояния; может легко преобразовываться в другие виды энергии; к. п. д. электропреобразователей может быть очень высоким, вплоть до 100%. Источником ее может служить как энергия падающей воды, так и энергия органического топлива. Отметим, что около 80% получаемой в мире энергии, большая часть которой превращается в электрическую на огромных ТЭЦ и ГРЭС, производится на основе паровых турбин. Схема превращения энергии органического топлива (угля, нефти, газа, мазута) в электрическую энергию многоступенчата. Например, тепло сгорающего топлива нагревает воду в котле, вода превращается в пар высокого давления, он приводит в движение паровую турбину, турбина – ротор электрического генератора, находящийся в сильном магнитном поле, тоже создаваемом током.
Интересно отметить, что и для пятого этапа развития энергетики, основанного на использовании атомной энергии, основным энергоносителем тоже является пар. Современная атомная и, возможно, будущая термоядерная электростанция – это типичные тепловые станции. В них тапка парового котла заменяется на атомный или термоядерный реактор, а «тепловое тело» – пар – остается. А это значит, что к. п. д. таких станций, как и ранее, не будет высоким. Характерно резкое критическое высказывание по этому поводу профессора А. Китайгородского: «...Сегодняшняя атомная электростанция напоминает мне телегу, которую движет великолепный восьмицилиндровый двигатель» (цит. по [Чирков, 1981, с. 75]). «Дедовские» способы превращения тепла в электроэнергию через посредство пара действительно резко тормозят развитие новых методов производства энергии в наше время. Вот почему в нашем веке остается невысоким вклад атомной энергетики в общую энергетику человечества, не более 5% по прогнозам к 2000 г., хотя ее экологическая безвредность очень привлекательна при безаварийной работе.
Заканчивая обзор развития энергообеспеченности человечества в его эволюции, обратим внимание на то, что к настоящему моменту человек использует и рассеивает энергию, в десятки раз большую, чем среднее млекопитающее его размера. Это означает, что рост энергетических показателей является одним из важнейших факторов в эволюции человека и развитие всех его технологий связано с совершенствованием энергетики. По воспоминаниям соратника К.Маркса В.Либкнехта, познакомившись с работой одного из первых электродвигателей и действием модели железной дороги, К.Маркс сказал, что теперь результаты необозримы: за экономической революцией должна последовать политическая, так как вторая служит только выражением первой (цит. по [Карцев, Хазановский, 1984, с. 135]).
Дата добавления: 2016-01-26; просмотров: 1122;