Ренатурация ДНК с ДНК
Для исследования ренатурации ДНК ее предварительно разрезают на небольшие куски, но 300–600 пар нуклеотидов, денатурируют нагреванием, а затем подвергают длительному отжигу при температуре 70–80°, при которой случайные короткие комплементарные последовательности распадаются, а ренатурируют лишь большие комплементарные участки ДНК, фактически те самые, которые оказались разделенными при денатурации.
Ренатурация ДНК вирусов происходит очень быстро. Так как скорость ренатурации зависит от концентрации ДНК (C0 ), то точнее говорить, что для вирусной ДНК низко произведение концентрации на время ренатурации (C0t ). Это и понятно, так как количество генов в геноме вирусов мало (порядка сотни) и вероятность одиночной нити ДНК «найти» «свою» вторую половину достаточно велика. Ренатурация ДНК бактерий происходит значительно дольше – число различных генов и, следовательно, число различных последовательностей ДНК в этом случае выше в десятки раз.
Казалось, можно было предсказать, что ренатурация ДНК животных должна идти еще намного медленнее (величина C0t должна быть выше). Однако фактически это не совсем так. Определенная часть ДНК (около 10 %) ренатурирует очень быстро, как у вирусов или еще быстрее. Еще некоторая, иногда значительная часть ДНК ренатурирует тоже довольно быстро, хотя и медленнее, чем у вирусов и бактерий. И лишь остальные 50–70 % ДНК (иногда меньше) ренатурируют так медленно, как это и ожидалось (C0t в 103раз выше, чем для ДНК бактерий).
Объяснение этому факту – в том, что часть ДНК в геноме животных и растений состоит из повторяющихся последовательностей ДНК. Действительно, если какие‑либо гены повторяются сотни или тысячи раз, то их концентрация в растворе соответственно возрастает и скорость их ренатурации будет выше, чем для генов, которые уникальны, т. е. представлены в геноме только один раз. He все повторяющиеся последовательности являются настоящими генами, т. е. несут информацию о структуре белка. Так, особенно высоко повторяющиеся последовательности (104–105раз на геном) состоят из одинаковых коротких, идущих друг за другом (тандемных) участков и находятся на концах хромосом и в тех точках, к которым прикрепляются нити веретена при митозе. Очевидно, что эти ДНК служат не для кодирования белков, а выполняют в хромосоме какую‑то механическую роль.
Среди умеренных повторов (102‑103 раз) роль некоторых известна; Это прежде всего те участки ДНК, которые кодируют РНК для белоксинтезирующей машины. Хотяэти участки ДНК и не кодируют белки, но их тоже часто называют генами. Так, гены больших рРНК (18S и 28S) повторяются от нескольких десятков раз у насекомых до тысяч раз у отдельных рыб и амфибий.
Еще чаще повторяются гены для маленького компонента рибосомной РНК – 5S РНК: у ксенопуса их 24 000, а у человека 2000. Наконец, гены для транспортных РНК(их более 40 видов) также повторяются сотни и тысячи раз, но для разных видов тРНК число этих повторов различно.
Смысл таких повторов для генов рРНК и тРНК, очевидно, состоит в том, чтобы обеспечить достаточное количество рибосом и скорость трансляции на них в тех клетках, где синтез белка особенно интенсивен. В первую очередь это относится к ооцитам, в которых гены больших рРНК еще и амплифицируются (гл. 2).
Оказалось, что повторяются, хотя и не в такой степени, и некоторые настоящие гены, кодирующие белки. В наибольшей степени это относится к генам гистонов: в хромосомах морского ежа каждый из них повторяется несколько сот раз. Гены многих других белков повторяются два– четыре раза.
Эти повторы в ДНК создают определенную проблему для понимания процессов эволюции. С одной стороны они должны замедлять течение эволюции. Случайная мутация, затронувшая один из повторяющихся генов, в принципе не должна подвергаться действию отбора. Так, например, мутация в одном из генов рРНК или в одном из гистоповых генов окажет очень небольшое полезное или вредное влияние на работу рибосом или ядер: ведь вся остальная, подавляющая масса рРНК или гистонов окажется неизменной. Ho если это так, то с течением времени такие «неотбираемые» мутации должны накапливаться в геноме и создавать все большие отличия между ранее одинаковыми генами. Ho в действительности таких различий нет или очень мало. Отсюда возникли предположения, которые уже нашли некоторые фактические подтверждения, о том, что в клетках существует какой‑то механизм коррекции, который исправляет постоянно возникающие отличия между повторами или скорее заменяет каждый набор повторяющихся генов точными копиями одного из них. Тогда в эволюции естественный отбор сохранит лишь те организмы, у которых гены рРНК или гистонов остались неизменными пли стали «лучше», чем были.
Скорость эволюции гистонов очень мала, т. е. они чрезвычайно сходны даже у далеких видов. Это и понятно: у всех животных и растений гистоны тесно связаны с ДНК, химическая природа которой остается неизменной. Очевидно, эволюция гистонов в основном закончилась более миллиарда лет назад, когда возникли эукариоты с настоящими хромосомами. Каждое изменение в структуре гистонов настолько затрагивает все строение и функционирование хромосом, что крайне редко оказывается полезным или хотя бы безвредным.
Ho с другой стороны, повторение некоторых генов, кодирующих белки, открывает для эволюции новые возможности. Если вдоль хромосомы происходит удвоение участка ДНК и появляются два одинаковых гена, то далее один из них может выполнять свою обычную функцию, в то время как второй будет изменяться в эволюции, не нарушая работу клетки убийственным для нее образом. Таким путем, очевидно, возникли варианты одного фермента – изоферменты, а также многие различные сейчас ферменты, имеющие, однако, общие черты строения. Сравнивая порядок аминокислот в разных белках и обнаруживая их большое сходство (такие сравнения сейчас делают на ЭВМ), можно детально проследить, какой белок от какого произошел и примерно когда это было.
Хорошим примером такой молекулярной эволюции могут служить гены, кодирующие белковую часть гемоглобина – глобин. Сейчас насчитывается около десяти видов глобинов, причем одни из них отличаются друг от друга незначительно, а у других произошла замена десятков аминокислот. Большинство из них участвует в образовании гемоглобина крови, но один из них, наиболее отличающийся от других, – миоглобин находится в мышцах.
Возвращаясь к повторяющимся последовательностям ДНК, надо сказать, что сегодня мы можем удовлетворительно объяснить назначение только небольшой их части. Некоторые повторы транскрибируются, но не кодируют белки. Предполагается, что они могут играть регуляторную роль. Ho многие повторы, а их большинство, вообще не транскрибируются, и роль их неизвестна.
Гибриды ДНК и РНК
При отжиге смеси РНК и денатурированной ДНК происходит образование гибридных двуспиральных молекул ДНК – РНК, причем РНК гибридизуется с комплементарными ее нитями, т. е. с теми же генами, с которых она была ранее транскрибирована. Этот опыт можно ставить в двух вариантах и в зависимости от этого решать две разные задачи. Если в растворе создать большой избыток ДНК, то на нее можно собрать значительную часть мРНК и таким образом судить о количестве различных РНК: чем меньший избыток ДНК требуется, тем меньше молекул данного вида РНК приходится на один активный ген. Наоборот, если в растворе создать избыток РНК, она «закроет» все гены, на которых она была ранее транскрибирована. Если теперь определить долю ДНК, образовавшей гибриды с РНК, можно будет сказать, какая часть генов была активной на этой стадии развития.
Недостатком этих методов и большинства работ, проведенных в минувшие годы с их помощью, является то, что в обычных условиях в первую очередь происходит гибридизация повторяющихся генов, а уникальные гены, представляющие наибольший интерес, так просто не выявляются: для них необходимы, как мы знаем, очень высокие концентрации ДНК и долгое время отжига. В последующие годы появились новые методы – сначала выделяли только уникальные гены, а затем уже проводили с ними эксперименты по гибридизации.
Методами гибридизации ДНК – РНК были получены многие интересные результаты. Так, было показано, что мРНК, запасенная в оогенезе, сохраняется в зародыше долгое время и используется для синтеза белка. Постепенно ее количество уменьшается и она замещается новосинтезированными РНК. Разнообразие этих новых РНК все время возрастает, очевидно, за счет того, что в зародыше по мере развития увеличивается количество различных органов и видов тканей, в которых синтезируются свои специфические белки и, значит, работают особые гены.
Было также показано, что уже в ооците лягушки активно около 2 % всей ДНК. Эта цифра в 60‑е годы не показалась удивительной, так как тогда было неизвестно, какая часть ДНК представлена настоящими генами, а какая – участками, не кодирующими белки. Сейчас известно, что белки кодируются лишь небольшой частью ДНК, составляющей у амфибий менее 5 %. Ho если это так, то 2 % всей ДНК – это почти половина от общего числа генов. К таким же выводам приводит и другой расчет. Общее число уникальных генов у амфибий, по‑видимому, не превышает 40–50 тыс. Ho 2 % всей ДНК соответствует приблизительно 20 тыс. генов среднего размера, т. е. половине всех генов. К таким же удивительным результатам привели и измерения числа активных генов у зародышей морского ежа. Ho для этого потребовались уже другие, более совершенные методы манипуляции с молекулами ДНК и РНК.
Генная инженерия
Этим термином называют различные методы, в основе которых лежит синтез различных ДНК invitro, их размножение в бактериальных клетках и затем использование для выяснения структуры и функции генов. Для методов генной инженерии используют ферменты, полученные из бактерий или клеток, зараженных вирусами. Среди них набор рестриктаз – ферментов, разрезающих ДНК в совершенно определенных точках. Для каждой рестриктазы (их сейчас известно более 70) характерна своя определенная последовательность из четырех‑шести пар нуклеотидов ДНК, которую фермент «опознает» и выбирает для своего действия.
Решающую роль в генной инженерии играет особый вирусный фермент, который называется «обратная транскриптаза». С его помощью осуществляется синтез ДНКна РНК. Это позволяет как бы синтезировать гены, точнее, получать точную ДНКовую копию всех или одного вида РНК. Этот «ген» не будет настоящим уже потому, чтов нем не будет копий интронных участков, которые не попадают в состав мРНК.
Наконец, существует возможность «встроить» готовую ДНК – синтезированный ген (копию мРНК) – в особую кольцевую ДНК‑плазмиду, способную автономно размножаться в бактериальных клетках. Это позволяет получить нужный нам вид ДНК практически в неограниченном количестве.
Размножение бактерий, содержащих введенную Плазмиду, позволяет получить «библиотеку» генов. Если ДНК, выделенную из клеток, разрезать на части, встроить в плазмиду, ввести в бактерии и их выращивать, то в культуре будут расти бактерии, в принципе содержащие все районы ДНК, т. е. все гены. Из такой культуры можно выделить по одной бактерии и из каждой выращивать отдельный клон бактерий вместе с плазмидами и вставленными в них ДНК животного. В каждом таком клоне будет содержаться только один отрезок ДНК животного, ведь бактерия – родоначальница клона была заражена только одной плазмидой с одной встроенной в нее молекулой (отрезком) ДНК. Если размеры такого отрезка ДНК невелики, то он будет содержать не более одного‑двух генов. Размножая бактерии одного клона, можно выделять из них любые количества совершенно одинаковых отрезков ДНК. Часто это будут отдельные гены с окружающими их районами. Вырастив из одиночных бактерий сотни или тысячи разных клонов, можно таким путем получить большой набор отдельных генов, разделенных по разным клонам. Это и есть «библиотека» генов.
В принципе в такой «библиотеке» содержатся все гены, отделенные друг от друга и многократно размноженные, т. е. клонированные. Однако найти в такой «библиотеке» нужный ген не так просто, Для этого используют такие клетки животных, где этот ген активно работает. Для генов глобина это будущие эритроциты – эритробласты, длягена овальбумина это клетки яйцевода кур. Из таких клеток получают мРНК, а из них пытаются выделить в чистомвиде один вид мРНК, например глобиновую. Имея такую мРНК, можно путем гибридизации проверить все клоныДНК и, если удастся, найти тот, в котором окажется нужный нам ген. Далее уже клон бактерий, содержащий этотген, будет постоянным его источником.
Используя эти сложные и трудоемкие методы, мы получили такие данные, которые вполне оправдали все усилия. Были, например, изучены гены глобина, овальбумина и десятки других и установлено их сложное строение с чередованием экзонов, кодирующих часть полипептидной цепи, и интропов, не несущих информации о белке. Очень немногие гены не содержали интронов, часто их было от двух до семи, но иногда попадались гены, расколотые на десятки экзонов, отделенных друг от друга нитронами. Смысл этого пока непонятен.
Часть генов была секвенирована, т. е. в них была определена последовательность нуклеотидов как в самом гене, так и в непосредственной близости от него. Наконец, некоторые гены (5SРНК и гены гистонов) были подвергнуты «хирургическим операциям»: от них отрезали кусочки различной длины и после этого проверяли, сохранил ли такой ген способность к быстрой и правильной транскрипции. Это позволило выявить вблизи гена или в нем самом регуляторные участки.
Имея клонированные и идентифицированные гены, можно исследовать не только их строение, но и функцию в клетке. Так, их можно, например, гибридизировать с политенными хромосомами дрозофилы и установить локализацию отдельных генов. Их можно гибридизировать с РНК из различных клеток или из разных стадий развития. Такой метод очень чувствителен и позволяет обнаружить такие РНК, которые содержатся в количестве одной‑двух молекул на клетку. С помощью этих методов можно оцепить, сколько видов РНК синтезируется в клетке и в каком количестве копий представлены эти виды. Можно также выявить, сколько копий, в какой ткани и на какой стадии развития содержит клетка отдельных конкретных (индивидуальных) мРНК. Работа во всех этих направлениях ведется сейчас в десятках лабораторий мира, но возможности таких исследований еще далеко не исчерпаны.
Дата добавления: 2016-01-26; просмотров: 778;