Растения очищают гидросферу

 

Растения очищают не только воздух, но и воду. При сравнительно небольшом загрязнении водоемы обладают способностью к самоочищению. Под самоочищением понимают совокупность всех процессов, направленных на восстановление первоначального химического состава и свойств воды. Так, например, сразу же у выходного отверстия городских коллекторов обычно довольно высокие концентрации нечистот, однако через несколько километров ниже их сброса вода бывает довольно чистой. Самоочищение представляет собой сложное явление, в котором можно выделить ряд процессов: физических, химических и биологических.

Среди физических факторов, способствующих самоочищению водоемов, первостепенное значение имеет разбавление, растворение и перемешивание поступающих в водоемы загрязнителей. Химические факторы самоочищения – окисление органических и неорганических веществ. Одним из важнейших компонентов самоочищения является использование веществ, загрязняющих воду, живыми организмами (бактериями, водорослями, плесневыми и дрожжевыми грибами и т. п.). Этот процесс составляет основу так называемого биологического самоочищения. Биологическое самоочищение включает ряд последовательных этапов:

1) использование веществ сточных вод гетеротрофными микроорганизмами;

2) рост и размножение зоопланктона и зообентоса за счет бактерий, взвешенного и растворенного органического вещества;

3) развитие водорослей и стимулирование процесса фотосинтетической аэрации;

4) развитие высшей водной растительности.

Высшая водная растительность, препятствуя процессу антропогенного евтрофирования, способствует ликвидации последствий загрязнения водоемов (Синельников, 1978).

Одним из наиболее активных поглотителей вредных веществ являются бактерии. Некоторые из них окисляют органические вещества в присутствии кислорода, другие осуществляют их распад в анаэробных условиях. Весьма важно, чтобы процесс распада органических веществ осуществлялся в аэробных условиях. В отсутствие кислорода органические вещества разлагаются анаэробными микроорганизмами с образованием вредных веществ типа сероводорода, аминов, метана.

Жизнедеятельность микроорганизмов, участвующих в самоочищении водоемов, зависит от температуры. Неудивительно, что в умеренной климатической зоне самоочищение реки происходит на участке 200–300 км, a на Крайнем Севере – до 2000 км.

Другим условием успешного протекания процесса самоочищения воды является присутствие в воде вредных примесей в слабой концентрации. При наличии большого количества ядовитых соединений происходит гибель всех организмов, в том числе и участвующих в самоочищении воды.

На способности бактерий обезвреживать вредные примеси основано их использование для биологической очистки сточных вод при помощи аэробных биохимических процессов. Биологическая очистка сточных вод в естественных условиях часто осуществляется на специальных подготовленных участках земли – нолях орошения или полях фильтрации. На полях орошения одновременно с очисткой вод выращивают кормовые сельскохозяйственные культуры или травы (обычно это костер безостый, овсяница луговая, тимофеевка луговая, клевер белый).

Первые поля орошения для очистки бытовых сточных вод появились в XVIII в. в Великобритании под Эдинбургом, а затем в Ашбертоне и Девоне. В 1857 г. в Лондоне была создана специальная комиссия, которая после изучения вопроса о способах очистки сточных вод пришла к заключению, что сбрасывать их в реки, даже очищенными, опасно. Лучше всего орошать сточными водами земледельческие угодья. В почве произойдет очищение воды, и водоемы окажутся чистыми.

В России первые поля орошения появились сначала в Одессе в 1887 г., затем в Киеве (1894 г.) и, наконец, в Москве (1898 г.).

В конце XIX в. стоки использовались для орошения в Германии, Франции, США, Австралии, Южной Африке, Индии.

Поля орошения существуют и в настоящее время. Однако широкого распространения орошение стоками не получило. Этот метод очистки сточных вод до сих пор изучен недостаточно. Между тем состав сточных вод непостоянен и не везде одинаков. Даже в одном и том же населенном пункте он меняется с течением времени. Кроме того, многие опасаются, что орошение сточными водами приведет к накоплению вредных веществ в продуктах питания, будет способствовать распространению инфекционных заболеваний.

В последние годы интерес к очистке воды путем орошения резко повысился. Это связано главным образом с нехваткой воды. Очистка сточных вод путем орошения привлекает к себе тем, что содержащиеся в них питательные вещества (азот, фосфор, микроэлементы) будут использоваться растениями. Кроме того, удастся получить на орошаемых землях гарантированные высокие урожаи. В экспериментах, проведенных в ГДР и ПНР, в результате орошения полей сточными водами урожай кормовых культур и трав значительно увеличился. Расчеты и практический опыт показывают, что уже за 3–4 года окупаются затраты на создание систем орошения сточными водами и хозяйства начинают получать прибыль. Наконец, очень важным представляется и то, что будет исключена опасность загрязнения водоемов этими стоками. Напомним, что это был один из основных аргументов специальной английской комиссии по изучению способов очистки сточных вод, которая работала еще в середине прошлого столетия.

В 1973 г. в пос. Купавна под Москвой был создан Всесоюзный научно‑исследовательский институт по сельскохозяйственному использованию сточных вод. Исследования, проведенные в этом институте, позволили установить, что на поля можно направлять стоки от предприятий пищевой промышленности (сахарных, пивоваренных, дрожжевых заводов), а также некоторых текстильных фабрик. Токсикологические анализы на лабораторных животных показали, что на поле, орошаемом сточными водами тонкосуконной фабрики, вырастают вполне доброкачественные корма. Необходимо лишь соблюдать определенные санитарно‑гигиенические требования (например, косить траву не раньше, чем через две недели после прекращения полива). Из скошенных трав можно готовить витаминизированную травяную муку.

В связи со строительством крупных животноводческих комплексов остро встал вопрос, куда девать так называемые «навозсодержащие стоки», образующиеся в громадных количествах. Для их хранения созданы специальные резервуары, возведены дамбы. Однако это едва ли лучший способ их употребления. Дело в том, что в случае разрушения дамб «навозсодержащие стоки» оказываются в водоемах, вызывая сильное загрязнение окружающей среды, массовую гибель рыбы и других водных организмов. Между тем «навозсодержащие стоки» содержат ценные вещества, необходимые для роста растений. В Белгородской области стоки от животноводческих комплексов стали использовать для полива земледельческих полей орошения. На орошаемых полях кормовые травы, свекла и кукуруза дают урожай в 2–3 раза больший, чем на богарных землях. Кроме того, сократился расход на орошение чистой воды, а также минеральных удобрений.

На отведенных для полей фильтрации и орошения участках создается оросительная сеть каналов, по которым подаются сточные воды. Очистка от загрязнений происходит в процессе фильтрации вод через почву. Слой почвы в 80 см обеспечивает достаточно надежную очистку.

В Польше, ГДР и ФРГ бытовые сточные воды используются для орошения полей, лугов и лесов.

Кроме полей орошения для очистки сточных вод в естественных условиях используют биологические пруды. Они представляют собой неглубокие земляные резервуары, в которых происходят те же процессы, что и при самоочищении водоемов. Обычно биологические пруды располагаются сериями на разных уровнях, благодаря чему вода из верхнего пруда самотеком направляется в нижерасположенные.

В процессе самоочищения водоемов большое значение придается одноклеточным водорослям, которые обладают антибактериальными свойствами и способны к детоксикации вредных органических и неорганических веществ. В связи с этим внесение в пруды определенных водорослей интенсифицирует процесс очистки воды от органических загрязнителей, улучшает их кислородный режим, уменьшает численность сапрофитных микроорганизмов.

Биологическая очистка сточных вод в искусственных условиях проводится в специальных сооружениях – биофильтрах или аэротенках. Биофильтрами называются сооружения, в которых биологическая очистка сточных вод осуществляется путем их фильтрации через слой крупнозернистого материала. Поверхность зерен покрывается биологической пленкой, заселенной аэробными микроорганизмами. В биофильтрах процесс очистки сточных вод протекает значительно интенсивнее, чем на полях орошения или полях фильтрации.

Аэротенки представляют собой железобетонные резервуары, через которые медленно протекают подвергающиеся интенсивной аэрации сточные воды, смешанные с активным илом, заселенным аэробными микроорганизмами. Интенсивность очистки воды в аэротенках в сотни раз выше, чем в природе при самоочищении.

В очистке вод важное значение имеют не только микроорганизмы, но и обитающие в водоемах высшие растения. Они поглощают растворенные в воде соли, ассимилируют накапливающийся в результате разложения органики углекислый газ и, что не менее важно, продуцируют кислород, необходимый для дыхания растений, животных и микроорганизмов.

Из нескольких видов водного гиацинта наиболее известным является Eichhornia crassipes, родина которого – Бразилия. Благодаря своим привлекательным цветкам, это растение при помощи человека в конце прошлого века распространилось в водах Флориды, Техаса, Луизианы, Миссисипи и других штатов США. В дальнейшем водный гиацинт появился в Мексике, Бирме, Австралии, Индонезии, Индии, Шри‑Ланке. Завоевал он позиции и в водоемах Африки. Это растение представляет собой пучок курчавых ярко‑зеленых листьев, собранных в круглую розетку. У каждого листа имеется пузыревидный черешок, удерживающий лист на поверхности воды. Цветет эйхорния великолепными цветками с голубыми или бледно‑фиолетовыми лепестками. Несмотря на это эйхорния пользуется очень плохой славой, так как, поселившись в водоеме, она быстро размножается и забивает каналы, мелиоративные сооружения и речные русла, мешая судоходству и рыболовству. Иначе говоря, это злостный сорняк водоемов.

Процесс размножения водного гиацинта осуществляется так быстро, что при благоприятных условиях он может в течение 10 месяцев «обжить» площадь водоема, превышающую 4 тыс. м2. Только в одном штате Луизиана сумма потерь, связанных с обитанием в водоемах эйхорнии, составляет ежегодно около 38 млн долларов.

Между тем было отмечено, что там, где растет эйхорния, вода всегда бывает очень чистой. Ученые установили, что она очень интенсивно поглощает из воды многие вредные вещества (инсектициды, фенолы, соединения тяжелых металлов: ртути, свинца, кадмия). В США создали специальную оранжерею с площадью водоема в 0,6 га. В этот водоем стали подавать предварительно обработанные озоном сточные воды. Циркулируя среди зарослей эйхорнии, вода за пять дней освобождалась от токсических примесей. Стоимость очистки воды с помощью эйхорнии оказалась в два раза ниже по сравнению с обычной. Если будут найдены способы регулирования размножения этого растения, то, возможно, его удастся использовать для очистки особо загрязненных открытых водоемов.

Эйхорния – теплолюбивое растение. По этой причине она не может быть использована для очистки водоемов в средних и северных широтах. С этой целью в нашей стране, а также в некоторых других странах в последние годы стали употреблять хорошо известные всем тростник, камыш, рогоз, образующие мощные, устойчивые сообщества. Проходя через заросли этих растений, сточные воды в значительной степени освобождаются от балластных и токсических веществ. У рогоза этому способствует строение корневой системы, отходящей от горизонтально ориентированного корневища вверх и вниз. Первые разветвляются в воде, а вторые пронизывают дно водоема. Благодаря этому рогоз успешно очищает от загрязнений воду и дно.

В настоящее время указанные растения используются в Донбассе для очистки шахтных вод. При этом стоки поступают в водоемы шахтного отлива, занимающие большие пространства. Наиболее распространенными макрофитами здесь являются тростник обыкновенный, камыш озерный, рогоз узколистный, широколистный и Лаксмана, а также некоторые другие растения. Сформировавшиеся в прудах‑накопителях растительные сообщества снижают содержание взвешенных частиц на 90 %, а количество солей – на 25–30 %.

Отмеченные выше растения нашли применение не только в Донбассе, но и в других местах. Специальные ботанические площадки для очистки шахтных вод с помощью растений созданы в Подмосковном угольном бассейне (Новомосковск). А в г. Волжском Волгоградской области стали пропускать по специальным каналам, засаженным водными макрофитами, стоки химических предприятий.

Эксперименты подобного рода проводятся и в других странах. Выше мы отмечали сильную загрязненность вод Рейна. Когда рейнскую воду пропустили через 800‑метровый канал, засаженный камышом, то на выходе был получен чистый поток.

Следует заметить, что воду очищают не только те растения, которые непосредственно произрастают в воде. Оказалось, что лес надежно предохраняет воду наземных источников от загрязнения вредными веществами. Мутность водного потока после прохождения через лесную полосу шириной 30 м уменьшилась в 100–150 раз. С уничтожением леса на водосборах и в прибрежной зоне загрязненность воды в реке увеличивается в 8–10 раз.

С развитием промышленности, ростом городов и повышением уровня их благоустройства объем сточных вод и, следовательно, осадка, получаемого при их очистке, с каждым годом возрастает. В связи с этим возникла проблема утилизации этого продукта цивилизации. Ведь скопление большого количества осадков затрудняет работу очистных сооружений и создает угрозу вторичного загрязнения окружающей среды. Ученые пришли к заключению, что получаемый при очистке стоков осадок целесообразно использовать в качестве удобрений сельскохозяйственных культур, так как он содержит в своем составе значительное количество органических веществ и питательных элементов (Покровская, Гладкова, 1977). Особенно эффективно его использование на бедных почвах, а также на участках, нарушенных добычей полезных ископаемых. Таким образом, растения и в этом отношении играют важную роль.

 

Органические вещества

 

Загрязнение водоемов органическими веществами представляет собой крайне неприятное явление, поскольку ведет к истощению запасов водного кислорода, расходующегося на окисление органики. Благодаря фотосинтезу населяющих водоемы растений в водную среду поступает свободный кислород, ускоряющий процессы окисления органических веществ. Но дело не только в этом. Обитатели водоемов обладают способностью непосредственно поглощать органические вещества и разрушать их. В качестве примера рассмотрим превращение ими фенола, одного из наиболее часто встречающихся и опасных загрязнителей водоемов.

Уже давно известно, что некоторые микроорганизмы, например бактерии из рода Pseudomonas, осуществляют окисление фенолов. Это обстоятельство широко используется для очистки от фенольных загрязнений промышленных и бытовых стоков самого разнообразного происхождения. Фенол активно поглощается из воды водными растениями. Если воду с растворенным в ней фенолом пропустить через «сито» из тростника, то содержание фенола в ней значительно уменьшится. За 8 дней тростник удаляет из каждого литра воды 10 мг фенола. Камыш также обладает способностью очищать воду от этого загрязнителя. 300 г биомассы камыша освобождают от фенола 5 л раствора концентрации 10 мг/л за 4 дня, 40 мг/л – за 12 дней, 100 мг/л – за 29 дней. В настоящее время сооружаются водоемы, в которых будут высажены тростник и камыш для очистки воды от фенола.

Фенол не только поглощается из воды растениями, но и подвергается детоксикации. Некоторая часть этого соединения, не включенная растениями в обмен веществ, выделяется в атмосферу через устьица.

Помимо фенола водные растения поглощают и обезвреживают и другие органические вещества, присутствующие в воде: индол, ксилол, пирокатехин, резорцин, пиридин. Особо следует остановиться на роли растений в освобождении водной среды от нефти и нефтепродуктов.

Наличие на поверхности воды пленки нефти резко снижает способность водоемов к самоочищению, поскольку эта пленка препятствует поступлению в воду атмосферного кислорода. В этом случае в водоеме создаются анаэробные условия, которые иногда способствуют еще большему повышению содержания в воде вредных веществ.

Разрушение нефти в водоеме происходит в результате самоочищения воды с помощью микроорганизмов. Там, где вода загрязнена нефтью, всегда обнаруживаются микроорганизмы, окисляющие керосин, соляровое масло, парафин и нафталин. Исследования, проведенные Арктической экспедицией МГУ в 1974 г., показали наличие нефтеокисляющей микрофлоры во всех пробах воды, взятых на трассе Северного морского пути. Количество нефтеокисляющих бактерий в поверхностном слое морской воды довольно велико и составляет 1500–7000 клеток в 1 мл. С увеличением глубины содержание микроорганизмов падало. Исследователи выделили большое количество чистых культур нефтеокисляющих микроорганизмов. Они хорошо росли на средах, содержащих в качестве единственного органического вещества дизельное топливо или сырую нефть. Микроорганизмы, окисляющие нефть, выделены также из воды и грунтов Каспийского моря, из вод р. Енисея.

Высшие растения также принимают участие в очищении водоемов от нефти. Установлено, что при концентрации нефти 1 г/л пленка на поверхности воды исчезала в присутствии высших растений через 5–10 дней, тогда как без них – через 28–32 дня. Наиболее устойчивы к нефтяному загрязнению тростник, рогоз узколистный и камыш озерный. Причем прирост растений в высоту в присутствии нефти был на 10–15 см больше, чем в варианте без нефти (Кроткевич, 1982).

Тростник обыкновенный хорошо поглощает из воды ДДТ. Правда, при концентрации 2 мг/л этот пестицид подавляет процесс фотосинтеза на 30–36 %. Еще более сильное ингибирующее влияние оказывает на процесс фотосинтеза тростника гексахлоран. Он ослаблял интенсивность этого процесса на 47 %.

В США проведены эксперименты по очистке водоемов от гербицидов. Для этой цели использовались водяной гиацинт, уруть, рдест, а также зеленые водоросли.

Попадание пестицидов в водоемы происходит, в частности, в результате смыва их с полей осадками. Оказалось, что лесные насаждения, расположенные по берегам водоемов, интенсивно поглощают из поверхностных стоков эти вещества. Наилучшими показателями в этом отношении характеризуются сосновый и кленово‑липовый лес.

Пятидесятиметровая полоса такого леса значительно снижает содержание в поверхностных стоках гексахлорциклогексана и хлорофоса.

 

Канцерогены

 

Одним из элементов естественной деградации канцерогенных полициклических ароматических углеводородов является их превращение с помощью живых организмов. В частности, в их разрушении участвуют микроорганизмы почвы и водоемов. Интенсивность и характер разложения бенз(а)пирена зависит от вида используемых для этой цели бактерий, а также от степени загрязненности почвы и воды данным канцерогеном.

Аналогичные превращения происходят с этим соединением в сточных водах нефтеперерабатывающих заводов, тепловых электростанций и в бытовых стоках. В этих условиях действуют те же культуры бактерий. Процесс может быть интенсифицирован при использовании культур, обладающих наибольшей активностью при очищении от канцерогенов почвы.

 

Удобрения

 

Одним из загрязнителей водоемов, как мы уже отмечали, являются удобрения. Крупные макрофиты (тростник, рогоз, камыш, аир, ежеголовник и др.) способны извлекать из воды в больших количествах биогенные элементы – азот, фосфор, калий, кальций, серу, железо и тем самым предупреждать и снижать степень евтрофикации водоемов. Например, густые заросли тростника, по данным П. Г. Кроткевича (1982), могут аккумулировать в урожае биомассы на 1 га до 6 т различных минеральных веществ, в том числе калия – 859, азота – 167, фосфора – 122, натрия – 451, серы – 277 и кремния – 3672 кг. К концу вегетации азот, фосфор, калий и другие элементы частично мигрируют из надземных в подземные органы растений, где они аккумулируются. Накопление биогенных элементов в подземных корневищах имеет важное значение в очищении воды от этих загрязнителей.

Тростник обыкновенный, рогоз узколистный и широколистный интенсивно поглощают как нитратный, так и аммонийный азот. Таким образом, заросли тростника и других макрофитов обладают способностью к деминерализации воды, что имеет очень важное значение для человека.

Огромное количество питательных веществ содержат стоки животноводческих помещений. В 1975 г. стоки от всех крупных животноводческих ферм страны содержали 2,2 млн т азота, 1 млн т фосфора, 2 млн т калия.

Ученые Кишиневского университета пришли к заключению, что многие водные растения способны обеззараживать стоки животноводческих ферм. Предварительно разбавив чистой водой пруды, они поселили в них ряску и роголистник. Эти растения активно поглощали из воды соединения азота и фосфора, являющиеся основными загрязнителями стоков животноводческих помещений. Очищенная таким образом вода используется затем для орошения полей.

В опытах П. Г. Кроткевича (1982) показано, что в 1 л исходной сточной жидкости животноводческого комплекса крупного рогатого скота содержится 1634 мг различных минеральных солей, а в односуточном фильтрате из сосуда с растениями ириса ложноаирового – 766 мг/л, т. е. растения изъяли 54 % солей. В сосуде с растениями рогоза узколистного из такого же раствора было поглощено 37 % солей. Растения интенсивно усваивали хлориды, сульфаты. В процессе удаления избытка азота и фосфора важная роль принадлежит фитопланктону. Однако усиленное размножение водорослей, сопровождаемое их отмиранием, может привести к вторичному загрязнению водоемов. В связи с этим следует обратить внимание на роль высших растений в очистке водоемов от солей. Сусак, например, способен накапливать 7,52 мг фосфора на 1 кг сухой массы. К тому же массовое развитие в водоемах высших растений снижает «цветение» водоемов или вообще его предотвращает. Эти растения очень удобны для очистки водоемов еще и по той причине, что их легко собирать и удалять.

Следует, однако, иметь в виду, что несмотря на перетекание к осени элементов минерального питания в корневища, значительная их доля остается в надземной части. Если растения оставить в водоеме, то содержащиеся в надземной части вещества в результате микробного разложения тканей и выщелачивания вновь окажутся в водоеме, произойдет его вторичное загрязнение. В связи с этим ученые рекомендуют всю надземную массу высших водных растений удалять до начала оттока питательных веществ в подземные органы.

Важное значение в очистке поверхностных стоков от удобрений имеет лесная растительность. После пропускания воды, обогащенной азотсодержащими соединениями, через пятиметровую площадку в березовом насаждении количество аммонийного азота уменьшилось в среднем на 0,9 мг/л, а нитратного азота – на 0,4 мг/л. После же пропускания такой воды по десятиметровой площадке содержание этих компонентов уменьшилось еще более сильно. Пятиметровая площадка соснового насаждения сокращает содержание аммонийного азота на 2,7 мг/л, а нитратного несколько больше. Лесная растительность вызывает также значительное уменьшение содержания в воде фосфатов.

 

Тяжелые металлы

 

Как уже отмечалось, большую опасность для живых организмов представляет накопление в окружающей среде тяжелых металлов. Оказалось, что некоторые микроорганизмы могут обезвреживать эти вещества. Так, например, со сточными водами предприятий химической, металлургической, электрохимической, кожевенной, текстильной и других отраслей промышленности в водоемы могут поступать соли хромовых кислот – хроматы и бихроматы. Они губительно воздействуют на все живые организмы, в том числе и на бактерий. Существующие способы обеззараживания сточных вод от хрома: химический, электрокоагуляционный, ионообменный основаны на переводе хрома из шестивалентного в трехвалентное состояние, в результате чего получается нерастворимая, выпадающая в осадок гидроокись хрома. Эти способы требуют дорогостоящего оборудования, больших капитальных затрат и сложны в эксплуатации.

После длительных поисков ученым удалось найти такие микроорганизмы, которые обладают способностью к жизнедеятельности в растворах, содержащих высокие концентрации хрома, причем они не только сохраняют жизнеспособность, но и способны переводить хром из шестивалентного в трехвалентное состояние. Бактерии, названные в честь их первооткрывателя В. И. Романенко «дехроматиканс Романенко», переводят хром в трехвалентное состояние, вызывают выпадение его в осадок в виде гидроокиси. Так происходит освобождение сточных вод от ионов хрома.

Указанные бактерии были использованы для очистки промышленных вод гальванического цеха запорожского завода «Коммунар». В 1 л этих вод содержится 80 мг шестивалентного хрома. Проходя через активированный ил, населенный бактериями, этот раствор всего за полчаса полностью очищается от хрома. За 1 ч установка, действующая на заводе «Коммунар», обеспечивает очистку 50 м3 воды, содержащей хром. Капитальные затраты на внедрение биохимической очистки сточных вод в 3–5 раз меньше, чем при использовании химического метода, а эксплуатационные расходы – в 7 раз. Новый метод очистки сточных вод от хрома вызвал большой интерес у специалистов.

В связи с токсичностью мышьяка ученые исследовали его метаболизм в ряде растительных организмов. Оказалось, что морские водоросли обладают способностью детоксицировать арсенаты путем образования органических производных о‑фосфатидилтриметиларсониумлактата.

Очень успешно извлекает из воды тяжелые металлы мох тортула пустынная (Torlula desertorum), широко распространенный в Таджикистане.

Избавиться от тяжелых металлов, содержащихся в воде, помогают и цветковые растения. Так, например, упоминавшийся выше водный гиацинт очень энергично поглощает из воды ионы свинца, кадмия, никеля, серебра, ртути и других металлов. Пропитанные этими веществами растения эйхорнии предполагается даже использовать для получения ценных металлов.

Установлено, что камыш, водяной орех, рдест красный активно извлекают из воды марганец, а ряска – медь и бор. Содержание марганца в различных видах макрофитов составляет в среднем 485 мг/кг воздушно‑сухой массы. В отдельных видах растений наблюдается отклонение от этого среднего значения в пределах от 66 до 2900 мг (Кроткевич, 1982). Полностью погруженные в воду растения содержат в 2–3 раза больше марганца, чем полуводные и надводные.

Особой устойчивостью к солям тяжелых металлов обладает тростник обыкновенный. В условиях аквариума он способен выносить без существенного для себя вреда растворы медного купороса, азотнокислой ртути, азотнокислого хрома и сернокислого цинка в концентрации от 100 до 300 мг/л. Растение успешно противостоит солям свинца. Оно росло при концентрации азотнокислого свинца, равной 2 г/л. Тростник обладает способностью извлекать из воды и накапливать в своих тканях более 20 химических элементов.

 

* * *

 

Приведенные выше материалы свидетельствуют о важной роли растений в очистке воды от вредных примесей. В настоящее время стоит вопрос о селекции специфических форм растений – деструкторов различных видов загрязнителей водоемов. Микроорганизмы и высшие растения поддерживают гомеостаз многих факторов в биосфере, что обеспечивает ее нормальное функционирование в современных условиях.

 








Дата добавления: 2016-01-26; просмотров: 2401;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.026 сек.