III. КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА.
Пояснение к рабочей программе.
При изучении темы «Колебания» следует параллельно рассматривать механические и электромагнитные колебания, что способствует выработке у студента единого подхода к колебаниям различной физической природы. Здесь следует четко уяснить понятия фазы, разности фаз, амплитуды, частоты, периода колебаний и там, где это необходимо, использовать графический метод представления гармонического колебания. Нужно знать, что любые колебания линейной системы всегда можно представить в виде суперпозиции одновременно совершающихся гармонических колебаний с различными частотами, амплитудами и начальными фазами.
Рассмотрение темы «Волны» целесообразно начинать с механических волн, распространяющихся в упругих средах. Здесь следует обратить внимание на картину мгновенного распределения смещений и скоростей в бегущей волне, различие между бегущей и стоячей волнами, зависимость фазовой скорости от частоты колебаний, найти связь между групповой и фазовой скоростями и показать их равенство в отсутствие дисперсии волн. Особое внимание студент должен уделить условию интерференции волн, энергетическому соотношению при интерференции волн, понять и объяснить перераспределение энергии при образовании минимумов и максимумов интенсивности. Переходя к изучению электромагнитных волн, студенту следует ясно представить себе физический смысл уравнений Максвелла и, опираясь на них, рассмотреть свойства этих волн. Нужно четко представлять, что переменные электрическое и магнитное поля взаимосвязаны, и могут существовать независимо от источника их породившего, распространяясь в пространстве в виде электромагнитной волны. Другими словами, электромагнитная волна – это распространяющееся в пространстве переменное электромагнитное поле. Под энергией электромагнитного поля следует подразумевать сумму энергий электрического и магнитного полей. Простейшей системой, излучающей электромагнитные волны, является колеблющийся электрический диполь. Следует помнить, что если диполь совершает гармонические колебания, то он излучает монохроматическую волну.
В настоящее время волновая оптика является частью общего учения о распространении волн. При изучении явлений интерференции, дифракции, объясняемых с позиций волновой природы света, студент должен обратить внимание на общность этих явлений для волн любой природы. Но световые волны имеют специфические особенности, когерентность, монохроматичность, которые обусловлены конечной длительностью свечения отдельного атома.
При изучении интерференции света особое внимание следует обратить на такие вопросы, как цвета тонких пленок, полосы равной толщины и равного наклона. Следует помнить, что при интерференции света имеет место суперпозиция, связанная с перераспределением энергии, а не с взаимодействием волн.
Рассматривая явление дифракции, необходимо уяснить метод зон Френеля, уметь пользоваться графическим методом сложения амплитуд, что будет способствовать пониманию дифракции на одной щели, дифракционной решетке. Кроме того , необходимо изучить дифракцию на пространственной решетке и уметь пользоваться формулой Вульфа — Брэгга, являющейся основной в рентгеноструктурном анализе, имеющем важнейшее практическое применение.
Изучение явлений интерференции и дифракции света должно подготовить студента к пониманию основ волновой (квантовой) механики и физики твердого тела.
Поперечность световых волн была экспериментально установлена при изучении явления поляризации света, широко используемом в практике. При изучении этого явления особое внимание следует обратить на способы получения поляризованного света и применение законов Брюстера, Малюса, на явление вращения плоскости поляризации в кристаллах и растворах, эффект Керра.
Изучая явление дисперсии света, необходимо уяснить сущность электронной теории этого явления, отличие нормальной дисперсии от аномальной. Следует представлять, что при движении заряженных частиц в веществе в том случае, когда их скорость движения превышает фазовую скорость световых волн в этой среде, возникает излучение Вавилова — Черенкова, которое нужно рассматривать как классическое явление.
Переход от классической физики к квантовой связан с проблемой теплового излучения и, в частности, с вопросом распределения энергии по частотам в спектре абсолютно черного тела, поэтому «Квантовая природа излучения», требует знания гипотезы Планка о квантовании энергии осцилляторов и уяснения, что на основании формулы Планка могут быть получены законы Стефана — Больцмана и Вина.
Развитие гипотезы Планка привело к созданию представлений о квантовых свойствах света. Кванты света получили название фотонов. С позиции квантовой теории света объясняются такие явления, как фотоэлектрический эффект и эффект Комптона. При изучении фотоэффекта следует знать формулу Эйнштейна и на ее основании уметь объяснить закономерности, установленные С. А. Столетовым.
Рассматривая эффект Комптона, необходимо обратить внимание на универсальный характер законов сохранения, которые оказываются справедливыми в каждом отдельном акте взаимодействия фотона с электроном.
Изучая световое давление, важно понять, что это явление может быть объяснено как на основе волновых представлений о свете, так и с точки зрения квантовой теории.
В итоге рассмотрение этого раздела у студента должно сформироваться представление, что электромагнитное излучение имеет двойственную корпускулярно-волновую природу (корпускулярно-волновой дуализм). Корпускулярно-волновой дуализм является проявлением взаимосвязи двух основных форм материи: вещества и поля.
Контрольная работа № 2 построена таким образом, что дает возможность проверить знания студентов по разделу «Колебания. Волны. Оптика».
Задачи на гармонические колебания охватывают такие вопросы, как определение амплитуды, скорости, ускорения, энергии, периода механических колебаний, силы тока, напряжения, энергии и частоты электромагнитных колебаний.
Волновые процессы представлены задачами, в которых определяются частота, длина, скорость распространения, энергия и объемная плотность энергии механических и электромагнитных волн.
Задачи по теме «Интерференция света» включают расчет интерференционной картины от двух когерентных источников, интерференцию в тонких пленках, полосы равной толщины и равного наклона.
Тема «Дифракция света» представлена задачами: зоны Френеля, дифракция в параллельных лучах на одной щели, на плоской и пространственной дифракционных решетках, разрешающая способность дифракционной решетки.
Задачи по теме «Поляризация света» охватывают такие вопросы, как применение законов Брюстера, Малюса, определение степени поляризации, вращение плоскости поляризации в растворах и кристаллах.
Тема «Распространение света в веществе» включает законы теплового излучения, фотоэффект, эффект Комптона, давление света.
ОСНОВНЫЕ ФОРМУЛЫ.
Оптическая длина пути в однородной среде ,
где s-геометрическая длина пути световой волны,
n -показатель преломления среды.
Оптически разность хода ,
где и - оптические пути двух
световых волн.
Условие интерференционного максимума
и интерференционного минимума
где - длина световой волны в ва-
кууме.
Ширина интерференционных полос ,
В опыте Юнга
где d - расстояние между когерентными источниками света,
l-расстояние от источников до экрана
Оптическая разность хода в тонких пленках:
в проходящем свете ;
в отраженном свете ,
где d-толщина пленки,
n-показатель преломления пленки,
i-угол падения света.
Радиусы светлых колец Ньютона
Дата добавления: 2016-01-20; просмотров: 1602;