Магнитное поле тороида
Тороид – устройство, выполненное в виде провода, намотанного плотно виток к витку на каркас, имеющий форму тора (рис. 25). Окружность радиуса R, проходящая через центры витков, называется осью тороида. Пусть I – сила тока, текущего по виткам тороида. Из симметрии рассматриваемого поля следует, что линии магнитной индукции представляют собой окружности с центрами на оси, проходящей через точку О перпендикулярно плоскости рис. 25. Возьмем одну из таких окружностей радиуса r в качестве замкнутого контура и применим теорему о циркуляции . Так как в каждой точке рассматриваемой окружности величина B должна быть одинакова,
. (1.21)
Если контур проходит внутри тороида, то он охватывает ток , где N – число витков тороида. По теореме о циркуляции
,
откуда получаем
. (1.22)
Контур, проходящий вне тороида, не охватывает ток, поэтому для него . Следовательно, вне тороида магнитная индукция равна нулю.
Для тороида, радиус витка которого много меньше расстояния r от внутренних точек тороида до точки О оси (рис. 25), можно ввести понятие плотности намотки тороида n:
.
Тогда (1.22) примет вид
. (1.23)
Так как в этом случае мало отличается от единицы, то из (1.23) получается формула, совпадающая с формулой (1.20) для бесконечно длинного соленоида, т. е. величину B можно считать одинаковой во всех точках внутри тороида.
Дата добавления: 2016-01-20; просмотров: 792;