Генетическая инженерия, история возникновения

 

При оптимизации любого биотехнологического процесса, протекающего с участием живых организмов, основные усилия обычно направлены на улучшение их генетических свойств. Традиционно для этих целей использовали мутагенез с последующим скринингом и отбором подходящих вариантов. В настоящее время разрабатываются и применяются принципиально новые методы, основанные на технологии рекомбинантных ДНК. Модификация генетического материала осуществляется разными методами: в живом организме (in vivo) и вне его (in vitro), соответственно, это два направления – клеточная инженерия и генетическая инженерия.

С помощью этих методов возможно получение новых высокопродуктивных продуцентов белков и пептидов человека, антигенов, вирусов и др.

Развитие генетической и клеточной инженерии приводит к тому, что биотехнологическая промышленность все шире и шире завоевывает новые области производства. Фундаментом для возникновения новейших методов биотехнологии послужили открытия в генетике, молекулярной биологии, генетической энзимологии, вирусологии, микробиологии и других дисциплинах.

Важнейшим этапом для развития биотехнологии было выделение в середине текущего столетия молекулярной биологии в самостоятельную дисциплину. Возникновение молекулярной биологии стало возможным благодаря взаимодействию генетики, физики, химии, биологии, математики и др. Э. Чаргофф и З. Д. Хочкис, исследуя молекулярные соотношения нуклеотидных оснований в ДНК (аденин, гуанин, цитозин, тимин) показали, что у различных организмов они одинаковы. Это открытие сыграло ключевую роль в установлении структуры ДНК. Большую роль в расшифровке структуры ДНК сыграл прогресс в области генетики бактерий и бактериофагов. Было установлено (А. Херши, М. Чейз, Дж. Ледерберг, Н. Циндер), что трансдукция (перенос генетического материала) может осуществляться с помощью бактериофага, а фаговой ДНК может принадлежать роль носителя наследственности. Б. Хейсом были выяснены также закономерности полового процесса у бактерий (конъюгация), при котором из донорских клеток, имеющих F-фактор (фертильность), генетический материал переносится в реципиентные клетки. Дж. Уотсон и Ф. Крик предложили комплиментарную модель строения ДНК и механизм ее репликации; было раскрыто уникальное свойство ДНК – способность самовоспроизведения (репликация).

На базе молекулярной биологии и генетики микроорганизмов к началу 60-х гг. сформировалась молекулярная генетика. Г. Гамов в 1954 году выдвинул гипотезу о том, что каждый кодон (последовательность нуклеотидов, кодирующая одну аминокислоту) должен состоять из трех нуклеотидов Следующим был вопрос о том, как переносится информация с ДНК, находящейся в ядре, в цитоплазму, где реализуется синтез белка на рибосомах.

Было установлено, что последовательность триплетных кодонов, хранящаяся в ДНК, транскрибируется (переписывается) в недолговечные молекулы информационной РНК (иРНК). Данный этап ДНК → иРНК был назван транскрипцией, а этап иРНК → белок – трансляцией. Перенос аминокислоты и определение ее местонахождения в синтезирующейся белковой молекуле осуществляет транспортная РНК (тРНК).

Механизм контроля генной активности долгое время оставался неизвестным. Большое значение имели работы Ф. Жакоба и Ж. Моно, показавшие, что у бактерий есть структурные гены, дающие информацию о синтезе определенных белков и регуляторные гены, которые осуществляют включение или выключение отдельных генов или их блоков.

Следующим важным шагом было проведение работ по расшифровке нуклеотидных последовательностей (секвенирование), которое дает информацию о первичной структуре участка генома, выполняющего определенные функции. Структура и функции приобрели общее молекулярно-биологическое выражение, его суть заключается в том, что функциональные состояния выражают структурные изменения макромолекул и ассоциаций.

От изучения закономерностей функционирования генетического материала в клетке вскоре исследователи перешли к генетическим манипуляциям. Возникла новая экспериментальная технология, заключающаяся во введении в клетки чужеродных генов. Названия «генетическая (или генная) инженерия» или «работа с рекомбинантными ДНК» эквивалентны. Суть этой технологии заключается в воссоединении фрагментов ДНК in vitro с последующим введением новых («рекомбинантных») генетических структур в живую клетку.

В 1972 году Берг с сотрудниками создали первую рекомбинантную молекулу ДНК, состоящую из фрагмента ДНК вируса ОВ40 и бактериофага λ dvgal с галактозным опероном E. coli. Инструментом для генетического конструирования стали две группы ферментов – рестриктирующие эндонуклеазы (рестриктазы) и лигазы. Первые необходимы для получения однородных фрагментов ДНК, вторые – для их соединения. Рестриктазы и лигазы в совокупности с другими ферментами (нуклеазами, обратной транскриптазой, ДНК-полимеразой и др.) обеспечивают проведение всех генноинженерных манипуляций.

 








Дата добавления: 2016-01-20; просмотров: 1890;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.