Методика составления уравнений состояния

Эта методика включает в себя следующие основные этапы:

1. Составляется ориентированный граф схемы (см. рис. 4,б), на котором выделяется дерево, охватывающее все конденсаторы и источники напряжения (ЭДС). Резисторы включаются в дерево по необходимости: для охвата деревом всех узлов. В ветви связи включаются катушки индуктивности, источники тока и оставшиеся резисторы.

2. Осуществляется нумерация ветвей графа (и элементов в схеме), проводимая в следующей последовательности: первыми нумеруются участки графа (схемы) с конденсаторами, затем резисторами, включенными в дерево, следующими нумеруются ветви связи с резисторами и, наконец, ветви с индуктивными элементами (см. рис. 4,б).

3. Составляется таблица, описывающая соединение элементов в цепи. В первой строке таблицы (см. табл. 1) перечисляются емкостные и резистивные элементы дерева, а также источники напряжения (ЭДС). В первом столбце перечисляются резистивные и индуктивные элементы ветвей связи, а также источники тока.

 

Таблица 1. Таблица соединений

  u
-1
J  

Процедура заполнения таблицы заключается в поочередном мысленном замыкании ветвей дерева с помощью ветвей связи до получения контура с последующим обходом последнего согласно ориентации соответствующей ветви связи. Со знаком «+» записываются ветви графа, ориентация которых совпадает с направлением обхода контура, и со знаком «-» ветви, имеющие противоположную ориентацию.

Осуществляется расписывание таблицы по столбцам и по строкам. В первом случае получаются уравнения по первому закону Кирхгофа, во втором – по второму.

В рассматриваемом случае (равенство тривиально)

,

откуда в соответствии с нумерацией токов в исходной цепи

.

При расписывании таблицы соединений по строкам напряжения на пассивных элементах необходимо брать со знаками, противоположными табличным:

(7)

Эти уравнения совпадают соответственно с соотношениями (6) и (5).

Из (7) непосредственно вытекает

.

Таким образом, формализованным способом получены уравнения, аналогичные составленным выше с использованием законов Кирхгофа.

Литература

  1. Бессонов Л.А.Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  2. Матханов П.Н.Основы анализа электрических цепей. Линейные цепи.: Учеб. для электротехн. радиотехн. спец. вузов. 3-е изд., перераб. и доп. –М.: Высш. шк., 1990. –400с.

Контрольные вопросы и задачи

  1. Какой принцип лежит в основе метода расчета переходных процессов с использованием интеграла Дюамеля, и для каких цепей может быть использован данный метод?
  2. В каких случаях целесообразно использовать метод расчета с использованием интеграла Дюамеля?
  3. В цепи на рис. 3 при напряжение на входе цепи мгновенно спадает до нуля. Определить ток в цепи.

Ответ: при ; при .

  1. Какие требования и почему выдвигаются к уравнениям состояния?
  2. Что включает в себя система уравнений при расчете переходного процесса в цепи методом переменных состояния?
  3. Перечислите основные этапы методики составления уравнений состояния.
  4. Записать матрицы А и Вдля цепи на рис. 5, если , , , , , .

Ответ: А ;

 

В

 

Лекция N 32

Нелинейные магнитные цепи при постоянных потоках. Основные понятия и законы магнитных цепей

При решении электротехнических задач все вещества в магнитном отношении делятся на две группы:

  • ферромагнитные(относительная магнитная проницаемость );
  • неферромагнитные(относительная магнитная проницаемость ).

Для концентрации магнитного поля и придания ему желаемой конфигурации отдельные части электротехнических устройств выполняются из ферромагнитных материалов. Эти части называют магнитопроводами или сердечниками.Магнитный поток создается токами, протекающими по обмоткам электротехнических устройств, реже – постоянными магнитами. Совокупность устройств, содержащих ферромагнитные тела и образующих замкнутую цепь, вдоль которой замыкаются линии магнитной индукции, называют магнитной цепью.

Магнитное поле характеризуется тремя векторными величинами, которые приведены в табл. 1.

 

Таблица 1. Векторные величины, характеризующие магнитное поле

Наименование Обозначение Единицы измерения Определение
Вектор магнитной индукции Тл (тесла) Векторная величина, характеризующая силовое действие магнитного поля на ток по закону Ампера
Вектор намагниченности А/м Магнитный момент единицы объема вещества
Вектор напряженности магнитного поля А/м , где Гн/м- магнитная постоянная

 

Основные скалярные величины, используемые при расчете магнитных цепей, приведены в табл. 2.

Таблица 2. Основные скалярные величины, характеризующие магнитную цепь

Наименование Обозначение Единица измерения Определение
Магнитный поток Вб (вебер) Поток вектора магнитной индукции через поперечное сечение магнитопровода
Магнитодвижущая (намагничивающая) сила МДС (НС) A где -ток в обмотке, -число витков обмотки
Магнитное напряжение А Линейный интеграл от напряженности магнитного поля , где и -граничные точки участка магнитной цепи, для которого определяется

 








Дата добавления: 2015-11-28; просмотров: 559;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.