Лекция 20. Уровни энергии и спектры атомов щелочных металлов. Спектры атомов второй группы

Спектры атомов второй группы

Группа атомов щелочных металлов – литий, натрий, калий, рубидий, цезий – непосредственно следует за благородными газами. Эти газы имеют завершенную структуру электронных оболочек, что объясняет их слабую химическую активность и высокие ионизационные потенциалы. Химические и оптические свойства атомов щелочных металлов определяются именно этим одним валентным электроном. Валентные электроны атомов щелочных металлов находятся в s–состояниях, которые характеризуются разными значениями главного квантового числа: Li – 2s, Na – 3s, K – 4s, Rb – 5s, Cs – 6s.

В атоме щелочного металла валентный Z-й электрон находится в электрическом поле, образованном зарядом ядра Ze и остальными Z-1 электронами атома. Это электронный остов. В этом случае электрическое поле не является кулоновским, так как электронный заряд распределяется по всему объему атомаЭнергию взаимодействия валентного электрона с остовом можно представить в виде:

(3.41)

Первый член описывает энергию взаимодействия валентного электрона с положительным зарядом, сосредоточенным в центре атома, второй член – энергию взаимодействия с электрическим диполем и т.д

Уровни энергии атомов щелочных металлов определяются формулой:

, (3.44)

где – главное квантовое число. Величина - квантовый дефект. В отличие от водородоподобного атома уровни энергии атомов щелочных металлов зависят не только от главного квантового числа, но и от орбитального квантового числа. В этом случае говорят, что происходит устранение вырожденияпо орбитальному квантовому числу. С возрастанием орбитального квантового числа роль поправки ослабевает.

Основное состояние атома лития – .Первый возбужденный уровень – . В соответствии с правилами отбора возможны переходы в основное состояние со всех возбужденных р–уровней. Эти переходы вызывают

излучение, спектральные линии которого относятся к главной серии:

, (m = 2, 3, … ).

Эта серия легко наблюдается как в испускании, так и в поглощении. Другие спектральные серии связаны с разрешенными переходами между возбужденными уровнями энергии:

первая побочная,или диффузная серия: ,

вторая побочная,или резкая серия: ,

серия Бергмана, или фундаментальная серия: .

Атом гелия содержит два электрона. Их моменты складываются по правилу нормальной связи. В случае синглетов число S = 0, квантовое число J принимает значения:

J = L. (3.46)

У атома гелия и ему подобных атомов синглетные состояния:

(3.46a)

В случае триплетов S = 1:

J = L+1, L, L – 1. (3.46б)

Соответствующие триплетные состояния:

(3.46в)

Решение уравнения Шредингера , зависящее от координат электронов и спиновых переменных, ищется в виде произведения двух функций: . По принципу Паули волновая функция должна быть антисимметричной по всем своим переменным.

Синглетные состояния атома гелия - парасостояния,триплетные – ортосостояния.Из(3.47а): основное состояние атома гелия не может быть триплетным, так как = 0. Отсюда же вытекает, что в ортосостояниях оба электрона не могут иметь одинаковые квантовые числа.

Для атома гелия существуют те же спектральные серии, что и для атомов щелочных металлов, но только в двух экземплярах, соответствующих синглетам и триплетам: две главные серии, две первых побочных, две вторых побочных серий и т.д. (рис.3.13). Характерная желтая линия , по которой был открыт гелий (Жансен, Локьер, 1868) в спектре солнечных протуберанцев, является триплетом с длинами волн 5875,963; 5875,643 и 5875,601 и отношением интенсивностей 1: 3: 5. Она представляет собой головной триплет первой побочной серии. Из-за очень малого различия двух последних длин волн эту линию долго считали дублетом. Главная серия триплетов находится в инфракрасной части спектра, а синглетов – в ультрафиолетовой части.

Два электрона атома гелия заполняют К–слой (электронная конфигурация – ). Основное состояние – . Все остальные состояния как в синглетах, так и в триплетах являются возбужденными. Замкнутая оболочка гелия очень прочна. Поэтому его основной терм расположен намного ниже, чем у атома водорода. Потенциал ионизации гелия имеет наибольшее значение среди всех других элементов: = 24,5 эВ. Состояние отсутствует: четверка квантовых чисел для обоих электронов совпадает: . Отсутствие терма прямое следствие принципа Паули. Первое возбужденное состояние атома гелия с энергией возбуждения 19,82 эВ относится к триплетам. Это состояние является метастабильным со временем жизни 7900 с. Синглетное состояние также является метастабильным. Его энергия возбуждения 20,62 эВ и время жизни 0,02 с. Нижний резонансно возбужденный уровень имеет энергию возбуждения 21,22 эВ и время жизни 0,56 с.

Атомы второй группы щелочно–земельные

металлы: Be, Mg, Ca, Sr, Ba, Ra. В эту группу входят также: Zn, Cd, Hg. Эти элементы, как и атом гелия, имеют заполненную внешнюю s–оболочку. Их основным состоянием является , и спектры аналогичны спектру атома гелия.

Особенности системы термов и спектра атома ртути (рис. 3.14). Основное состояние с электронной конфигурацией . Триплетные P–уровни с конфигурацией имеют энергию возбуждения 4,67 эВ, 4,89 эВ и 5,46 эВ. Согласно правилам отбора переходы с этих уровней в основное состояние невозможны. Поэтому состояния метастабильные. Вместе с тем, наблюдается достаточно интенсивная «запрещенная» линия с длиной волны . Она возникает при интеркомбинационном переходе . Нижние P–уровни в триплетах имеют более низкую энергию, чем низший синглетный уровень c энергией 6,78 эВ. Линия , соответствующая переходу , в 30 раз интенсивнее интеркомбинационной линии. Вспомним опыты Франка и Герца. Открытый ими дискретный уровень атома ртути с энергией около 4,9 эВ соответствует возбужденному состоянию . Переход атома ртути из основного, синглетного состояния в возбужденное триплетное состояние при неупругих соударениях с электроном обусловлен изменением направления спина рассеянного электрона: . Стрелками обозначены направления спина сталкивающегося электрона и электронов атома ртути. Звездочка означает возбужденный атом. Указанная схема отвечает сохранению полного спина системы «электрон + атом».








Дата добавления: 2016-01-16; просмотров: 1460;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.