Сканирующие элементы зондовых микроскопов

Для работы зондовых микроскопов необходимо контролировать рабочее расстояние зонд-образец и осуществлять перемещения зонда в плоскости образца с высокой точностью (на уровне долей ангстрема). Эта задача решается с помощью специальных манипуляторов - сканирующих элементов. Сканирующие элементы зондовых микроскопов изготавливаются из пьезоэлектриков, которые изменяют свои размеры во внешнем электрическом поле. В различных технических приложениях широкое распространение получили преобразователи из пьезокерамических материалов. Пьезокерамика представляет собой поляризованный поликристаллический материал, получаемый методами спекания порошков из кристаллических сегнетоэлектриков. Поляризация керамики производится следующим образом. Керамику нагревают выше температуры Кюри (для большинства пьезокерамик эта температура менее 300°С), а затем медленно охлаждают в сильном (порядка 3 кВ/см) электрическом поле. После остывания пьезокерамика имеет наведенную поляризацию и приобретает способность изменять свои размеры в зависимости от взаимного направления вектора поляризации и вектора внешнего электрического поля.

В сканирующей зондовой микроскопии широкое распространение получили трубчатые пьзоэлементы (рис. 2). Они позволяют получать достаточно большие перемещения объектов при относительно небольших управляющих напряжениях. Трубчатые пьезоэлементы представляют собой полые тонкостенные цилиндры, изготовленные из пьезокерамических материалов. Обычно электроды в виде тонких слоев металла наносятся на внешнюю и внутреннюю поверхности трубки, а торцы трубки остаются непокрытыми.


 

Рис. 2. Трубчатый пьезоэлемент


Под действием разности потенциалов между внутренним и внешним электродами трубка изменяет свои продольные размеры. Абсолютное удлинение пьезотрубки равно: где h – толщина стенки пьезотрубки, V - разность потенциалов между внутренним и внешним электродами. Таким образом, при одном и том же напряжении V удлинение трубки будет тем больше, чем больше ее длина и чем меньше толщина ее стенки.

Соединение трех трубок в один узел (рис.3) позволяет организовать прецизионные перемещения зонда микроскопа в трех взаимно перпендикулярных направлениях. Такой сканирующий элемент называется триподом.


 

Рис. 3. Сканирующий элемент в виде трипода, собранный на трубчатых пьезоэлементах


Недостатками такого сканера являются сложность изготовления и сильная асимметрия конструкции. На сегодняшний день в сканирующей зондовой микроскопии наиболее широко используются сканеры, изготовленные на основе одного трубчатого элемента. Общий вид трубчатого сканера и схема расположения электродов представлены на рис. 4. Материал трубки имеет радиальное направление вектора поляризации.


 

 

Рис. 4. Трубчатый пьезосканер


Внутренний электрод обычно сплошной. Внешний электрод сканера разделен по образующим цилиндра на четыре секции. При подаче противофазных напряжений на противоположные секции внешнего электрода (относительно внутреннего) происходит сокращение участка трубки в том месте, где направление поля совпадает с направлением поляризации, и удлинение там, где они направлены в противоположные стороны. Это приводит к изгибу трубки в соответствующем направлении. Таким образом, осуществляется сканирование в плоскости X,Y. Изменение потенциала внутреннего электрода относительно всех внешних секций приводит к удлинению или сокращению трубки по оси Z. Таким образом, можно реализовать трехкоординатный сканер на базе одной пьезотрубки. Реальные сканирующие элементы имеют часто более сложную конструкцию, однако принципы их работы остаются теми же самыми.

Широкое распространение получили также сканеры на основе биморфных пьзоэлементов. Биморф представляет собой две пластины пьезоэлектрика, склеенные между собой таким образом, что вектора поляризации в каждой из них направлены в противоположные стороны (рис. 5). Если подать напряжение на электроды биморфа, как показано на рис. 6, то одна из пластин будет расширяться, а другая сжиматься, что приведет к изгибу всего элемента. В реальных конструкциях биморфных элементов создается разность потенциалов между внутренним общим и внешними электродами так, чтобы в одном элементе поле совпадало с направлением вектора поляризации, а в другом было направлено противоположно.


 

Рис. 5. Устройство биморфного пьезоэлемента


Изгиб биморфа под действием электрических полей положен в основу работы биморфных пьезосканеров. Объединяя три биморфных элемента в одной конструкции, можно реализовать трипод на биморфных элементах (рис. 6).


 

Рис. 6. Трехкоординатный сканер на трех биморфных элементах


Если внешние электроды биморфного элемента разделить на четыре сектора, то можно организовать движение зонда по оси Z и в плоскости X,Y на одном биморфном элементе (рис. 7).


 

 

Рис. 7. Схематическое изображение работы биморфного пьезосканера


Действительно, подавая противофазные напряжения на противоположные пары секций внешних электродов, можно изгибать биморф так, что зонд будет двигаться в плоскости X,Y (рис. 7 (а, б)). А, изменяя потенциал внутреннего электрода относительно всех секций внешних электродов, можно прогибать биморф, перемещая зонд в направлении Z (рис. 7 (в, г)).

Нелинейность пьезокерамики

Несмотря на ряд технологических достоинств, пьезокерамики обладают некоторыми недостатками, отрицательно влияющими на работу сканирующих элементов. Одним из таких недостатков является нелинейность пьезоэлектрических свойств, которая обычно проявляется при значениях поля выше ~ 100В/мм. Поэтому для корректной работы сканирующих элементов обычно используются меньшие управляющие поля, находящиеся в области линейности керамики.

Крип пьезокерамики

Другим недостатком пьезокерамики является так называемый крип (creep - ползучесть) – запаздывание реакции на изменение величины управляющего электрического поля. Крип приводит к тому, что в СЗМ изображениях наблюдаются геометрические искажения, связанные с этим эффектом. Особенно сильно крип сказывается при выводе сканера в заданную точку для проведения локальных измерений и на начальных этапах процесса сканирования. Для уменьшения влияния крипа керамики применяются временные задержки в указанных процессах, позволяющие частично скомпенсировать запаздывание сканера.

Гистерезис пьезокерамики

Еще одним недостатком пьезокерамик является неоднозначность зависимости удлинения от направления изменения электрического поля (гистерезис).


Рис. 8. Зависимость величины смещения пьезотрубки от величины и направления приложенного напряжения


Это приводит к тому, что при одних и тех же управляющих напряжениях пьезокерамика оказывается в различных точках траектории в зависимости от направления движения (рис. 8). Для исключения искажений СЗМ изображений, обусловленных гистерезисом пьезокерамики, регистрацию информации при сканировании образцов производят только на одной из ветвей зависимости ΔZ=f(V).








Дата добавления: 2016-01-11; просмотров: 3647;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.