Сканирующая туннельная микроскопия

Исторически первым в семействе зондовых микроскопов появился сканирующий туннельный микроскоп. Принцип работы СТМ основан на явлении туннелирования электронов через узкий потенциальный барьер между металлическим зондом и проводящим образцом во внешнем электрическом поле.

Рис. 22. Схема туннелирования электронов через потенциальный барьер в туннельном микроскопе

 

В СТМ зонд подводится к поверхности образца на расстояния в несколько ангстрем. Туннельный ток от расстояния зависит экспоненциально, что позволяет осуществлять регулирование расстояния между зондом и образцом в туннельном микроскопе с высокой точностью. СТМ представляет собой электромеханическую систему с отрицательной обратной связью. Система обратной связи поддерживает величину туннельного тока между зондом и образцом на заданном уровне (I0), выбираемом оператором. Контроль величины туннельного тока, а следовательно, и расстояния зонд-поверхность осуществляется посредством перемещения зонда вдоль оси Z с помощью пьезоэлектрического элемента (рис. 42).

Изображение рельефа поверхности в СТМ формируется двумя методами. По методу постоянного туннельного тока (рис. 23 (а)) зонд перемещается вдоль поверхности, осуществляя растровое сканирование; при этом изменение напряжения на Z - электроде пьезоэлемента в цепи обратной связи (с большой точностью повторяющее рельеф поверхности образца) записывается в память компьютера в виде функции Z = f (x,y), а затем воспроизводится средствами компьютерной графики.

Рис. 23. Формирование СТМ изображений поверхности по методу постоянного туннельного тока (а) и постоянного среднего расстояния (б)

 

При исследовании атомарно гладких поверхностей часто более эффективным оказывается получение СТМ изображения поверхности по методу постоянной высоты Z = const. В этом случае зонд перемещается над поверхностью на расстоянии нескольких ангстрем, при этом изменения туннельного тока регистрируются в качестве СТМ изображения поверхности (рис. 23 (б)). Сканирование производится либо при отключенной ОС, либо со скоростями, превышающими скорость реакции ОС, так что ОС отрабатывает только плавные изменения рельефа поверхности. В данном способе реализуются очень высокие скорости сканирования и высокая частота получения СТМ изображений.

Итак, разрешение в направлении по нормали к поверхности достигает в СТМ долей ангстрема. Латеральное же разрешение зависит от качества зонда и определяется, в основном, не макроскопическим радиусом кривизны кончика острия, а его атомарной структурой. При правильной подготовке зонда на его кончике с большой вероятностью находится либо одиночный выступающий атом, либо небольшой кластер атомов, который локализует его на размерах, много меньших, чем характерный радиус кривизны острия. Атом, выступающий над поверхностью зонда, находится ближе к поверхности на расстояние, равное величине периода кристаллической решетки. Поскольку зависимость туннельного тока от расстояния экспоненциальная, то ток в этом случае течет, в основном, между поверхностью образца и выступающим атомом на кончике зонда.


Рис. 24. Реализация атомарного разрешения в сканирующем туннельном микроскопе


С помощью таких зондов удается получать пространственное разрешение вплоть до атомарного, что продемонстрировано многими исследовательскими группами на образцах из различных материалов.

Зонды для туннельных микроскопов

В сканирующих туннельных микроскопах используются зонды нескольких типов. В первое время широкое распространение получили зонды, приготовленные из вольфрамовой проволоки методом электрохимического травления. Процесс приготовления СТМ зондов по данной технологии выглядит следующим образом. Заготовка из вольфрамовой проволоки укрепляется так, чтобы один из ее концов проходил сквозь проводящую диафрагму (Д) и погружался в водный раствор щелочи КОН (рис. 25). Контакт между диафрагмой и вольфрамовой проволокой осуществляется посредством капли КОН, расположенной в отверстии диафрагмы.


 

Рис. 45. Схема изготовления СТМ зондов из вольфрамовой проволоки с помощью электрохимического травления.


При пропускании электрического тока между диафрагмой и электродом, расположенным в растворе КОН, происходит перетравливание заготовки. По мере травления толщина перетравливаемой области становится настолько малой, что происходит разрыв заготовки за счет веса нижней части. При этом нижняя часть падает, что автоматически разрывает электрическую цепь и останавливает процесс травления.

Другая широко применяемая методика приготовления СТМ зондов – перерезание тонкой проволоки из PtIr сплава с помощью обыкновенных ножниц. Перерезание производится под углом порядка 45 градусов с одновременным натяжением P проволоки на разрыв (рис. 26).


 

Рис. 26. Схематичное изображение процесса формирования СТМ острия при перерезании проволоки из PtIr сплава.


Процесс формирования острия в этом случае отчасти сходен с процессом изготовления острия из вольфрама. При перерезании происходит пластическая деформация проволоки в месте резки и обрыв ее под действием растягивающего усилия. В результате в месте разреза формируется вытянутое острие с неровным краем с многочисленными выступами, один из которых и оказывается рабочим элементом зонда. Данная технология изготовления СТМ зондов применяется сейчас практически во всех лабораториях и почти всегда обеспечивает гарантированное атомарное разрешение при СТМ исследованиях поверхности.

Измерение локальной работы выхода в СТМ

Для неоднородных образцов туннельный ток является не только функцией расстояния от зонда до образца, но и зависит от значения локальной работы выхода электронов в данном месте поверхности. Для получения информации о распределении работы выхода применяется метод модуляции расстояния зонд-образец ΔZ . С этой целью в процессе сканирования к управляющему напряжению на Z-электроде сканера добавляется переменное напряжение с внешнего генератора на частоте ω. Тогда напряжение на Z-электроде сканера можно представить в виде

Это приводит к тому, что расстояние зонд - образец оказывается промодулированным на частоте ω:

,

где ΔZm и Um связаны между собой через коэффициент электромеханической связи пьезосканера K:

Частота ω выбирается выше частоты полосы пропускания петли обратной связи для того, чтобы система обратной связи не могла отрабатывать данные колебания зонда. Амплитуда переменного напряжения Um выбирается достаточно малой, чтобы возмущения туннельного промежутка также были малыми.

В свою очередь, колебания расстояния зонд-образец приводят к тому, что появляется переменная составляющая тока на частоте ω:

, где

Поскольку амплитуда сигнала модуляции и соответственно амплитуда колебаний туннельного промежутка малы, туннельный ток может быть представлен в виде

Таким образом, амплитуда малых колебаний туннельного тока на частоте ω оказывается пропорциональна корню квадратному из величины локальной работы выхода электронов с поверхности образца:

Детектируя амплитуду колебаний туннельного тока в каждой точке кадра, можно построить одновременно с рельефом Z = f(x,y) распределение величины локальной работы выхода φ(x,y) на исследуемом участке поверхности.








Дата добавления: 2016-01-11; просмотров: 3246;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.