Виды степенных средних
| Вид степенной средней | Показатель степени (m) | Формула расчета | |
| Простая | Взвешенная | ||
| Гармоническая | -1 |
|
|
| Геометрическая |
|
| |
| Арифметическая |
|
| |
| Квадратическая |
|
| |
| Кубическая |
|
|
Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая – при абсолютных значениях уровней ряда.
Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где
– средняя величина; х– индивидуальное значение; n – число единиц изучаемой совокупности; k – показатель степени, определяющий вид средней.
При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Для иллюстрации мажорантности рассмотрим пример.
Студент ВУЗа получил в течение семестра всего две оценки: "3" и "2". Требуется рассчитать степенные средние всех видов и с их помощью проверить действие правила мажорантности.
1)
(балла)
2)
(балла)
3)
(балла)
4)
(балла)

2,55 > 2,50 > 2,45 > 2,41
Дата добавления: 2016-01-09; просмотров: 918;
