Блок детектирования пониженного напряжения питания
В реальных условиях эксплуатации может сложиться такая ситуация, при которой напряжение питания МК опустится ниже минимально допустимого, но не достигнет порога отпускания схемы POR. В этих условиях МК может «зависнуть». При восстановлении напряжения питания до номинального значения МК останется неработоспособным.
Для восстановления работоспособности системы после «просадки» напряжения питания МК необходимо снова сбросить. Для этой цели в современных МК реализован дополнительный блок детектирования пониженного напряжения питания. Такой модуль используется в МК семейства НС08 фирмы Motorola, аналогичный модуль имеется в составе семейства РIС17 фирмы Microchip. Рассматриваемый модуль генерирует сигнал внутреннего сброса при снижении напряжения питания до уровня чуть ниже минимально допустимого. Уровень срабатывания блока детектирования пониженного напряжения питания значительно превышает напряжение сохранения данных в ОЗУ МК. Событие сброса по сигналу блока пониженного напряжения питания отмечается специальным битом в одном из регистров МК. Следовательно, программно анализируя этот бит после сброса МК, можно установить, что данные целы, и продолжить выполнение программы.
Сторожевой таймер
Если, несмотря на все принятые меры, МК все же «завис» , то на случай выхода из этого состояния все современные контроллеры имеют встроенный модуль сторожевого таймера. Принцип действия сторожевого таймера показан на рис. 4.11.
Рис. 4.11. Принцип действия сторожевого таймера.
Основу сторожевого таймера составляет многоразрядный счетчик. При сбросе МК счетчик обнуляется. После перехода МК в активный режим работы значение счетчика начинает увеличиваться независимо от выполняемой программы. При достижении счетчиком максимального кода генерируется сигнал внутреннего сброса, и МК начинает выполнять рабочую программу сначала.
Для исключения сброса по переполнению сторожевого таймера рабочая программа МК должна периодически сбрасывать счетчик. Сброс счетчика сторожевого таймера осуществляется путем исполнения специальной команды (например, CLRWDT) или посредством записи некоторого указанного кода в один из регистров специальных функций. Тогда при нормальном, предусмотренном разработчиком, порядке исполнения рабочей программы переполнения счетчика сторожевого таймера не происходит, и он не оказывает влияния на работу МК. Однако, если
исполнение рабочей программы было нарушено, например, вследствие «зависания», то велика вероятность того, что счетчик не будет сброшен вовремя. Тогда произойдет сброс по переполнению сторожевого таймера, и нормальный ход выполнения рабочей программы будет восстановлен. Модули сторожевых таймеров конкретных МК могут иметь различные особенности:
• в ряде МК векторы внешнего сброса и сброса по переполнению сторожевого таймера совпадают. Это не позволяет выявить причину сброса программным путем и затрудняет написание рабочей программы. Более высокоуровневые МК имеют либо различные векторы сброса, либо отмечают событие сброса по переполнению сторожевого таймера установкой специального бита в одном из регистров специальных функций;
• в некоторых МК при переходе в один из режимов пониженного энергопотребления, когда рабочая программа не выполняется, автоматически приостанавливается работа сторожевого таймера. В других МК сторожевой таймер имеет независимый тактовый генератор, который продолжает функционировать и в режиме ожидания. В этом случае необходимо периодически выводить МК из состояния ожидания для сброса сторожевого таймера. В PIC-контроллерах фирмы Microchip выработка таких сбросов может быть запрещена путем записи нуля в специальный бит конфигурации WDTE.
Использование сторожевого таймера существенно повышает способность к самовосстановлению системы на основе МК.
Дата добавления: 2016-01-07; просмотров: 1125;