Дифференциальные уравнения движения материальной точки.

Проектируя уравнение (1) на координатные оси и учитывая зависимости задаваемых сил от координат, скоростей и времени, получим дифференциальные уравнения динамики точки. Так, для декартовых координат имеем:

(3.2)

Дифференциаль­ные уравнения движения в цилиндрической системе координат будут иметь вид

;

В заключение приведем дифференциальные уравнения динамики точки в проекциях на оси натурального триэдра; эти уравнения бывают особенно удобны в тех случаях, когда известна траектория движения точки. Проектируя уравнение (3.1) на касательную, главную нормаль и бинормаль к траек­тории, получаем

, ,

Рассмотрим теперь на примере уравнений динамики точки в декартовых координатах (3.2) постановку и процесс реше­ния задач динамики точки. Существуют две основные задачи динамики точки: прямая и обратная. Первая задача динамики (прямая) состоит в следующем: дано движение точки, обладающей массой , т. е. заданы функции

(3.3)

требуется найти силы, вызывающие это движение. Решение этой задачи не представляет затруднении. Со­гласно уравнениям (3.1) и (3.3) находим проекции для чего дважды дифференцируем заданные функции (3.3).

, , (3.4)

Выражения (3.4) представляют проекции равнодействую­щей всех сил, действующих на точку; часть сил (или часть проекций)могут быть известными, остальные (но не более трёх проекций) найдутся из уравнений (3.4). Эту задачу можноформально привести к решению задачи статики, если переписать уравнение (3.1) в виде

Здесь - сила инерции точки, проекции которой на оси х, у, z равны выражениям (3.3) с противополож­ными знаками. Формальное сведение задачи динамики к задаче статики при помощи введения сил инерции, которое довольно часто практикуется в задачах механики, носит название метода кинетостатики.

Вторая (обратная) задача динамики точки ставится сле­дующим образом: на точку массы т, положение и вектор скорости которой в начальный момент времени известны, действуют заданные силы; требуется найти движение этой точки (ее координаты х,у,z) как функции времени. Так как правые части уравнений (2) -проекции сил на оси х, у, z- являются известными функциями координат, их первых производных и времени, то для получения требуемого результата надо проинтегрировать систему трех обыкновен­ных дифференциальных уравнений второго порядка. Анали­тическое решение такой задачи оказывается возможным лишь в отдельных частных случаях. Однако численные ме­тоды позволяют решить задачу с практически любой необходимой степенью точности. Предположим, что мы проинтегрировали систему диффе­ренциальных уравнений (3.2) и нашли выражения для коор­динат х, у, z в функции времени. Так как система (3.2) имеет шестой порядок, то при интегрировании ее появятся шесть произвольных постоянных и мы получим следующие выра­жения для координат:

(3.5)

Для определения постоянных (i = 1, 2,... 6) в этом решении следует обратиться к начальным условиям задачи. Записывая поставленные условия применительно к декартовым координатам, имеем при t = 0

(3.6)

Подставляя в найденное выражение (3.5) первую группу начальных условий (3.6) при t =0, получаем три уравнения, связывающие постоянные интегрирования:

Недостающие три соотношения находятся следующим об­разом: дифференцируем уравнения движения (3.5) по време­ни и подставляем в полученные выражения вторую группу начальных условий (3.6) при t = 0; имеем

Решая теперь совместно эти шесть уравнений, получим искомые значения шести произвольных постоянных интегри­рования (i = 1, 2,... 6), подставляя которые в уравнения дви­жения (3.5), находим окончательное решение задачи.

(9)

При составлении дифференциальных уравнений движения точки для конкретного случая следует, прежде всего, оценить действия различных факторов: учесть основные силы и от­бросить второстепенные. При решении различных техниче­ских задач часто пренебрегают силами сопротивления воз­духа и силами сухого трения; так, например, поступают при вычислении собственных частот колебательных систем, на значения которых упомянутые силы оказывают незначитель­ное влияние. Если тело движется вблизи поверхности земли, то его силу тяжести считают постоянной, а поверхности земли — плоской; при удалении от поверхности земли па рас­стояния, сравнимые с ее радиусом, необходимо уже принимать во внимание изменение силы тяжести с высотой, по­этому в таких задачах используется закон тяготения Ньютона.

Нельзя пренебрегать силой сопротивления воздуха при больших скоростях движения тела; в этом случае обычно принимают квадратичный закон сопротивления (сила сопротивления считается пропорциональной квадрату скорости движения тела).

(3.6)

Здесь - скоростной напор, ρ – плотность среды, в которой движется точка, - коэффициент сопротивления, - характерный поперечный размер. Однако, как будет показано ниже, в некоторых задачах необходимо учитывать внутреннее трение в жидкости (в газе), что приводит к более общей формуле для определения силы сопротивления

Если дви­жение тела происходит в вязкой среде, то и при небольших скоростях движения надо учитывать силу сопротивления, однако в этой задаче достаточно считать ее пропорциональ­ной первой степени скорости.

Пример. Рассмотрим задачу о прямолинейном движении точки в среде с сопротивлением, сила сопротивления задана выражением (3.6). Начальная скорость точки - , конечная - . Надо определить среднюю скорость движения на заданном интервале скоростей. Из формулы (3.2) имеем

или

(3.7)

Это дифференциальное уравнение с разделяющимися переменными, решение которого может быть представлено в виде

,

решение которого запишется в виде

(3.8)

Для определения пройденного расстояния перейдём к новым координатам, для этого умножим левую и правую части уравнения (3.7) на ; при этом заметим, что

,

тогда и здесь получаем дифференциальное уравнение с разделяющимися переменными

 

,

решение которого может быть представлено в виде

(3.9)

Из формул (3.8) и (3.9) получаем выражение для средней скорости

.

Для средняя скорость равна .

Но если положить , то нетрудно увидеть, что в этом случае и , то есть движущееся тело никогда не остановится, что, во-первых, противоречит здравому смыслу, а во-вторых неясно чему будет равна средняя скорость. Чтобы определить возьмём левые интегралы в пределах от до бесконечно малого ε, тогда получим

и

.

Неопределённость вида раскрыта по правилу Лопиталя. Столь необычный результат является следствием неправильно выбранной модели сопротивления движению. Рассмотрим пример, в котором сила сопротивления задана формулой . Как и в предыдущем случае имеем дифференциальное уравнение с разделяющимися переменными

или .

Проделав выкладки аналогичные предыдущему решению, получим

 

,

Для имеем

.

Для определения пройденного расстояния переходим к зависимости S(x) и получаем

Для имеем

,

Тогда средняя скорость равна

(3.10)

Как видно в этом случае время и пройденный путь конечны, а средняя скорость определяется формулой (3.10).








Дата добавления: 2016-01-07; просмотров: 2240;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.