Индуктивное сопротивление
Переменный ток, проходя по проводу, образует вокруг него переменное магнитное поле, которое наводит в проводнике ЭДС обратного направления (ЭДС самоиндукции). Сопротивление току, обусловленное противодействием ЭДС самоиндукции, называется реактивным индуктивным сопротивлением.
Величина реактивного индуктивного сопротивления зависит как от значения тока в собственном проводе, так и от величины токов в соседних проводах. Чем дальше расположены фазные провода линии, тем меньше влияние соседних проводов – поток рассеяния и индуктивное сопротивление увеличиваются.
На величину индуктивного сопротивления оказывает влияние диаметр провода, магнитная проницаемость (m) и частота переменного тока. Величина погонного индуктивного сопротивления рассчитывается по формуле:
(4.1)
где w – угловая частота;
m – магнитная проницаемость;
среднегеометрическое расстояние между фазами ЛЭП;
радиус провода.
Погонное индуктивное сопротивление состоит из двух составляющих и . Величина называется внешним индуктивным сопротивлением. Обусловлено внешним магнитным полем и зависит только от геометрических размеров ЛЭП. Величина называется внутренним индуктивным сопротивлением. Обусловлено внутренним магнитным полем и зависит только от m, то есть от тока проходящего по проводнику.
Среднегеометрическое расстояние между фазными проводами рассчитывается по формуле:
.
На рис. 1.3 показано возможное расположение проводов на опоре.
При расположении проводов в одной плоскости (рис. 4.3 а, б) формула для расчета Dср упрощается:
Если же провода расположены в вершинах равностороннего треугольника, то Dср = D.
Для ВЛЭП напряжением 6-10 кВ расстояние между проводами составляет 1-1,5 м; напряжением 35 кВ – 2-4 м; напряжением 110 кВ – 4-7 м; напряжением 220 кВ – 7-9м.
При f = 50Гц значение w =2×p×f = 3,14 1/с. Тогда формула (4.1) записывается следующим образом:
Для проводников выполненных из цветного металла (медь, алюминий) m = 1.
На ЛЭП высокого напряжения (330 кВ и выше) применяют расщепление фазы на несколько проводов. На напряжении 330 кВ обычно используют 2 провода в фазе (индуктивное сопротивление снижается приблизительно на 19%). На напряжении 500 кВ обычно используют 3 провода в фазе (индуктивное сопротивление снижается приблизительно на 28%). На напряжении 750 кВ используют 4-6 проводов в фазе (индуктивное сопротивление снижается приблизительно на 33%).
Величина погонного индуктивного сопротивления при расщепленной конструкции фазы рассчитывается как:
где n – количество проводов в фазе;
Rпр экв – эквивалентный радиус провода.
При n = 2, 3
где а – шаг расщепления (среднегеометрическое расстояние между проводами в фазе);
Rпр – радиус провода.
При большем количестве проводов в фазе их располагают по окружности ( см. рис. 4.4). В этом случае величина эквивалентного радиуса провода равна:
где rp – радиус расщепления.
Величина погонного индуктивного сопротивления зависит от радиуса провода, и практически не зависит от сечения (рис. 4.5).
Величина x0 уменьшается при увеличении радиуса провода. Чем меньше средний диаметр провода, тем больше x0, так как в меньшей степени влияют соседние провода, уменьшается ЭДС самоиндукции. Влияние второй цепи для двухцепных ЛЭП проявляется мало, поэтому им пренебрегают.
Индуктивное сопротивление кабеля намного меньше чем у воздушных ЛЭП из-за меньших расстояний между фазами. В ряде случаев им можно пренебречь. Сравним погонное индуктивное кабельных и воздушных линий разных напряжений:
Номинальное напряжение, кВ | КЛЭП | ВЛЭП |
0,06 | 0,31 | |
0,125 | 0,4 |
Величина реактивного сопротивления участка сети рассчитывается:
Х = х0×l.
Дата добавления: 2016-01-07; просмотров: 998;