Условия возникновения и горения дуги
Прежде чем рассматривать конструкцию коммутационных аппаратов, необходимо ознакомиться с основными процессами, происходящими в электрической дуге. Подробно явление разряда в газах, в том числе дуговой разряд, изучается в курсе «Защита объектов энергетики от перенапряжений».
При размыкании контактов в цепи высокого напряжения возникает электрический разряд в виде дуги. В дуге различают околокатодное пространство, ствол дуги и околоанодное пространство (рис.). Все напряжение распределяется между этими областями UK, Uсл, Ua. Катодное падение напряжения в дуге постоянного тока 10 — 20 В, а длина этого участка составляет 10-4—10-5 см, таким образом, около катода наблюдается высокая напряженность
б
Рис. Распределение напряжения U(a) и напряженности Е (б) в стационарной дуге постоянного тока
электрического поля (105— 106В/см). При таких высоких напряженностях происходит ударная ионизация. Суть ее заключается и том, что электроны, вырванные из катода силами электрического поля (автоэлектронная эмиссия) или за счет нагрева катода (термоэлектронная эмиссия), разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать один электрон с оболочки нейтрального атома, то произойдет ионизация. Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги. Проводимость плазмы приближается к проводимости металлов [γ = 2500 1/(Ом•см)]. В стволе дуги проходит большой ток и создается высокая температура. Плотность тока может достигать 10000 А/см2 и более, а температура — от 6000 К при атмосферном давлении до 18000 К и более при повышенных давлениях.
Высокие температуры в стволе дуги приводят к интенсивной термоионизации, которая поддерживает большую проводимость плазмы. Термоионизация — процесс образования ионов за счет соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения. Чем больше ток в дуге, тем меньше ее сопротивление, а поэтому требуется меньшее напряжение для горения дуги, т. е. дугу с большим током погасить труднее.
При переменном токе напряжение источника питания uс меняется синусоидально, так же меняется ток в цепи i (рис. 10, а), причем ток отстает от напряжения примерно на 90°. Напряжение на дуге uд, горящей между контактами выключателя, непостоянно. При малых токах напряжение возрастает до величины ы3 (напряжения зажигания), затем по мере увеличения тока в дуге ироста термической ионизации напряжение уменьшается. В конце полупериода, когда ток приближается к нулю, дуга гаснет при напряжении гашения иг. В следующий полупериод явление повторяется, если не приняты меры для деионизации промежутка.
Рис. 10. Изменение тока и напряжения при гашении дуги переменного
тока: а — момент горения дуги; б — после гашения дуги
Если дуга погашена теми или иными способами, то напряжение между контактами выключателя должно восстановиться до напряжения питающей сети. Однако поскольку в цепи имеются индуктивные, активные и емкостные сопротивления, возникает переходный процесс, появляются колебания напряжения (рис. 10, б), амплитуда которых uBmax может значительно превышать нормальное напряжение. Для отключающей аппаратуры важно, с какой скоростью восстанавливается напряжение на участке АВ.
Подводя итог, можно отметить, что дуговой разряд начинается за счет ударной ионизации и эмиссии электронов с катода, а после зажигания дуга поддерживается термоионизацией в стволе дуги.
Гашение дуги
В отключающих аппаратах необходимо не только разомкнуть контакты, но и погасить возникшую между ними дугу.
В цепях переменного тока ток в дуге каждый полупериод проходит через нуль (рис. 10), в эти моменты дуга гаснет самопроизвольно, но в следующий полупериод она может возникнуть вновь. Как показывают осциллограммы, ток в дуге становится близким к нулю несколько раньше естественного перехода через нуль (рис. 11, а). Это объясняется тем, что при снижении тока энергия, подводимая к дуге, уменьшается, следовательно, уменьшается температура дуги и прекращается термоионизация. Длительность бестоковой паузы tn невелика (от десятков до нескольких сотен микросекунд), но играет важную роль в гашении дуги. Если разомкнуть контакты в бестоковую паузу и развести их с достаточной скоростью на такое расстояние, чтобы не произошел электрический пробой, то цепь будет отключена очень быстро.
Во время бестоковой паузы интенсивность ионизации сильно падает, так как не происходит термоионизации. В коммутационных аппаратах, кроме того, принимаются искусственные меры охлаждения дугового пространства и уменьшения числа заряженных частиц. Эти процессы деионизации приводят к постепенному увеличению электрической прочности промежутка uпр (рис. 11, б).
Резкое увеличение электрической прочности промежутка после перехода тока через нуль происходит главным образом за счет увеличения прочности околокатодного пространства (в цепях переменного тока 150 — 250 В). Одновременно растет восстанавливающееся напряжение uв. Если в любой момент uпр> ив промежуток не будет пробит, дуга е загорится вновь после перехода тока через нуль.
Рис. 11. Условия погасания дуги переменного тока:
а — погасание дуги при естественном переходе тока через нуль; б — рост электрической прочности дугового промежутка при переходе тока через нуль
Если в какой-то момент и'пр = uв, то происходит повторное зажигание дуги в промежутке.
Таким образом, задача гашения дуги сводится к созданию таких условий, чтобы электрическая прочность промежутка между контактами uпр была больше напряжения между ними ив.
Процесс нарастания напряжения между контактами отключаемого аппарата может носить различный характер в зависимости от параметров коммутируемой цепи. Если отключается цепь с преобладанием активного сопротивления, то напряжение восстанавливается по апериодическому закону; если в цепи преобладает индуктивное сопротивление, то возникают колебания, частоты которых зависят от соотношения емкости и индуктивности цепи. Колебательный процесс приводит к значительным скоростям восстановления напряжения, а чем больше скорость duB/dt, тем вероятнее пробой промежутка и повторное зажигание дуги. Для облегчения условий гашения дуги в цепь отключаемого тока вводятся активные сопротивления, тогда характер восстановления напряжения будет апериодическим (рис. 11, б).
Дата добавления: 2015-12-29; просмотров: 2576;