Полупроводниковые диоды. Полупроводниковым диодом называется электропреобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом

Полупроводниковым диодом называется электропреобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющим два вывода.

Структура полупроводникового диода с электронно-дырочным переходом и его условное графическое обозначение приведены на рис. 2.2.

 

Рис. 2.2. Схема структуры полупроводникового диода (а)

и его графическое обозначение (б)

 

Буквами p и n обозначены слои полупроводника с проводимостями соответственно p-типа и n-типа. В контактирующих слоях полупроводника (область p-n-перехода на рис. 2.2) имеет место диффузия дырок из слоя p в слой n, причиной которой является то, что их концентрация в слое p значительно больше их концентрации в слое n. В итоге в приграничных областях слоя p ислоя n возникает так называемый обедненный слой, в котором мала концентрация подвижных носителей заряда (электронов и дырок). Обедненный слой имеет большое удельное сопротивление. Ионы примесей обедненного слоя не компенсированы дырками или электронами. В совокупности ионы образуют некомпенсированные объемные заряды, создающие электрическое поле с напряженностью Е. Это поле препятствует переходу дырок из слоя p в слой n и переходу электронов из слоя n в слой p. Оно создает так называемый дрейфовый поток подвижных носителей заряда, перемещающий дырки из слоя n в слой p и электроны из слоя p в слой n. Таким образом, в зависимости от полярности проходящего через диод тока, проводимость диода существенно изменяется, приводя к изменению величину проходящего тока.

Основные характеристики полупроводникового диода представляются его вольт-амперной характеристикой (ВАХ). Вольт-амперная характеристика – это зависимость тока i, протекающего через диод, от напряжения u, приложенного к диоду. Вольт-амперной характеристикой называют и график этой зависимости (рис. 2.3).

 

 

 

Рис. 2.3. Вольт-амперная характеристика и основные параметры полупроводникового диода

Диоды обычно характеризуются следующими параметрами (рис. 2.3):

1. обратный ток при некоторой величине обратного напряжения Iобр, мкА;

2. падение напряжения на диоде при некотором значении прямого тока через диод Uпр, в;

3. емкость диода при подаче на него обратного напряжения некоторой величины С, пФ;

4. диапазон частот, в котором возможна работа без снижения выпрямленного тока fгр, кГц;

5. рабочий диапазон температур.

Техническими условиями задаются обычно максимальные (или минимальные) значения параметров для диодов каждого типа. Так, например, задается максимально возможное значение обратного тока, прямого падения напряжения и емкости диода. Диапазон частот задается минимальным значением граничной частоты fгр. Это значит, что параметры всех диодов не превышает (а в случае частоты – не ниже) заданного техническими условиями значения. Общий вид диодов показан на рис 2.4.

Рис. 2.4. Конструкция диодов малой мощности (а) и средней мощности (б)

Стабилитрон. Это полупроводниковый диод, сконструированный для работы в режиме электрического пробоя. Условное графическое обозначение стабилитрона представлено на рис. 2.5,а.

 

Рис. 2.5. Графическое изображение полупроводниковых диодов:

а) стабилитрон; б) диод Шоттки; в) варикап; г) туннельный диод;

д) обращенный диод

 

В указанном режиме при значительном изменении тока стабилитрона напряжение изменяется незначительно, т. е. стабилитрон стабилизирует напряжение. Вольт-амперная характеристика кремниевого стабилитрона Д814Д представлена на рис. 2.6.

Рис. 2.6. Вольт-амперная характеристика

кремниевого стабилитрона Д814Д

В стабилитронах может иметь место и туннельный, и лавинный, и смешанный пробой в зависимости от удельного сопротивления базы.

В стабилитронах с низкоомной базой (низковольтных, до 5,7 В) имеет место туннельный пробой, а в стабилитронах с высокоомной базой (высоковольтных) – лавинный пробой.

Основными является следующие параметры стабилитрона:

1. Uст – напряжение стабилизации (при заданном токе в режиме пробоя);

2. Iст.мин – минимально допустимый ток стабилизации;

3. Iст.максмаксимально допустимый ток стабилизации;

4. rст дифференциальное сопротивление стабилитрона (на участке пробоя), ;

5. (ТКН) – температурный коэффициент напряжения стабилизации.

Величины Uст , Iст.мин и Iст.макс принято указывать как положительные.

Для примера применения стабилитрона обратимся к схеме так называемого параметрического стабилизатора напряжения (рис. 2.7.). Легко заметить, что если напряжение uвх настолько велико, что стабилитрон находится в режиме пробоя, то изменения этого напряжения практически не вызывают изменения напряжения uвых (при изменении напряжения uвх изменяется только ток i, а также напряжение ).

 

 

Рис. 2.7. Схема параметрического стабилизатора напряжения

Стабилитрон является быстродействующим прибором и хорошо работает в импульсных схемах.

Стабистор. Это полупроводниковый диод, напряжение на котором при прямом включении (около 0,7 В) мало зависит от тока (прямая ветвь на соответствующем участке почти вертикальная). Стабистор предназначен для стабилизации малых напряжений.

Диод Шоттки. В диоде Шоттки используется не p-n-переход, а выпрямляющий контакт металл-полупроводник. Условное графическое обозначение диода Шоттки представлено на рис. 2.5, б.

В обычных условиях прямой ток, образованный электронами зоны проводимости, переходящими из полупроводника в металл, имеет очень малую величину. Это является следствием недостатка электронов, энергия которых позволила бы им преодолеть данный барьер.

Для увеличения прямого тока необходимо «разогреть» электроны в полупроводнике, поднять их энергию. Такой разогрев может быть осуществлен с помощью электрического поля.

Если подключить источник внешнего напряжения плюсом к металлу, а минусом к полупроводнику n-типа, то потенциальный барьер понизится и через переход начнет протекать прямой ток. При противоположном подключении потенциальный барьер увеличивается и ток оказывается весьма малым.

Диоды Шоттки – очень быстродействующие приборы, они могут работать на частотах до десятков гигагерц (1 ГГц=1·109 Гц). У диода Шоттки может быть малый обратный ток и малое прямое напряжение (при малых прямых токах) – около 0,5 В, что меньше, чем у кремниевых приборов. Максимально допустимый прямой ток может составлять десятки и сотни ампер, а максимально допустимое напряжение – сотни вольт.

 








Дата добавления: 2015-12-29; просмотров: 3786;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.