НОРМАЛЬНАЯ И ПАТОЛОГИЧЕСКАЯ

НАСЛЕДСТВЕННОСТЬ ЧЕЛОВЕКА

 

Наследственность человека, как и наследственность других живых существ, является менделевской наследственностью, ибо признаки человека генетически детерминированы и их передача от поколения к поколению происходит на основе законов наследственности, открытых и обоснованных Г. Менделем.

 

Методы изучения наследственности

Человека

 

Применимость к человеку классического генетического анализа как основного метода изучения наследственности и изменчивости исключена из-за невозможности экспериментальных скрещиваний, длительности времени достижения половой зрелости и малого количества потомства на пару (семью). Поэтому для изучения нормальной и патологической наследственности используют другие методы.

1. Генеалогический метод (метод родословных).Часто этот метод называют клинико-генеалогическим. Генеалогия — это учение о родословных. Поэтому смысл данного метода заключается в изучении наследственности человека путем учета и анализа распределения наследственных признаков в семьях, т. е. в изучении наследственности человека по родословным. Метод сводится к изучению родословных связей и передачи признаков среди близких и дальних родственников, прямых и непрямых.

Исследование того или иного признака в семье начинают с того члена семьи, который представляет интерес (исходный пациент, или пробанд). Потомки одних и тех же родителей, происходящие из разных зигот (братья и сестры), получили название сибсов. Родословные составляют путем учета возможно большего количества родственников, используя для обозначения поколений, мужчин, женщин, браков, типов зиготности и т. д., различные символы, перечень которых приводится на рис. 151.

С помощью этого метода возможно установление наследственного характера признака, типа и частоты наследования того или иного признака, сцепленности признака с полом, а также определение зависимости или независимости распределения признаков. Анализируя родословные, можно обнаружить различия между близким сцеплением и аллелизмом. На рис. 152 приводится в качестве примера родословная с доминантным наследованием, а на рис. 153 — родословная, демонстрирующая независимое распределение неаллельных генов. Метод характеризуется относительно большой разрешающей способностью. Однако он имеет недостаток, связанный с трудностями сбора сведений о проявлении того или иного признака у родственников пробанда, поскольку люди плохо знают свои родословные.

С 1892 г. в судебной практике используют метод отпечатков пальцев (дерматоглифику). Иногда к этому методу прибегают в анализе родословных, но он не имеет самостоятельного значения.

2. Цитологический метод. Этот метод заключается в цитологическом анализе кариотипа человека в норме и патологии. С его помощью исследуют нарушения хромосом, изменяющие количество и структуру.

 

 

Цитологический метод основывается на данных о количестве, размерах и структуре хромосом. В соответствии с денверовской классификацией (1960) хромосомы обозначают номерами, увеличивающимися по мере уменьшения размеров хромосом. Так первая пара представлена самыми крупными хромосомами, вторая — меньшими, третья — еще меньшими и т. д.

В соответствии с рекомендациями IV Международного конгресса по генетике чечеловека в Париже (1971) при описании добавочных хромосом их числи помещают после общего числа хромосом и половых хромосом со знаком «+» или «-» перед номером вовлеченной ауто-сомы. Например, запись (формула) 47, ХХ+21 означает кариотип женщины с трисомией по 21 паре. Напротив, кариотип мужчины с экотрахромосомой Х обозначают как 47, XXY. Знак «плюс» или «минус» помещают, сопровождая хромосомный символ, чтобы указать удлинение или укорочение хромосомного плеча. Буква q символизирует длинное плечо, ар — короткое. Например, запись 46, XY,1 q+ указывает на увеличение длины длинного плеча хромосомы № 1. Кариотип: 47, XY,+14p+ символизирует мужчину с 47 хромосомами, включая дополнительную хромосому в паре (№ 14) с повышением в длине ее короткого плеча. Сокращениями def (дефишенс), dup (дупликация), г (кольцо, возникающее после воссоединения двух разрывов в хромосоме), inv (инверсия) и t (транслокация) обозначают аберрации хромосом. Номера хромосомы или хромосом помещают после сокращений в скобках. Например, запись 46, XX, г(18) означает кариотип женщины с 46 хромосомами, включая г-хромо-сому № 18. Формула 46, X, inv (Xq) есть кариотип женщины с 46 хромосомами, включая одну нормальную Х хромосому и изохромосому (с двумя генетически идентичными плечами) для длинного плеча хромосомы X. Банды помечают числами в порядке удаления цент-ромеры вдоль короткого плеча (р) и длинного плеча (q) хромосомы.

Главная ценность цитогенетического метода заключается в том, что он позволяет установить связь между нарушениями кариотипа и изменениями фенотипа, т. е. связь между нарушениями в определенной хромосомной паре и определенным наследственным дефектом. Это в свою очередь помогает найти принадлежность гена к определенной группе сцепления. Основное преимущество этого метода заключается в его простоте. Однако этот подход имеет существенные ограничения. Прежде всего с его помощью могут быть исследованы только крупные нарушения в структуре хромосом, видимые с помощью светового микроскопа. Следовательно, это ограничивает количество анализируемых генетических детерминантов. Далее, этот подход может обеспечить изучение генотипов лишь на уровне групп сцепления.

3. Популяционный метод. Этот метод основан на законе Харди-Вайнберга и заключается в изучении распространения генов в популяциях человека. В условиях свободного скрещивания частота, с которой возможна встреча двух аллелей в диплоидном организме, равна произведению частот каждого аллеля. Если относительную частоту доминантного аллеля А в двухаллельной системе обозначить р, относительную частоту рецессивного аллеля а обозначить q и если р + q == 1, то при свободном скрещивании частота трех генотипов составляет следующие значения: АА = р2, Аа = 2pq и аа = q2. Следовательно, зная о равновесии по Харди-Вайнбергу, можно определить влияние названных выше факторов на относительные частоты этих трех генотипов в поколениях. Как видно, данный метод позволяет изучать не только географическое распространение и частоту тех или иных генов, но и влияние на эти показатели разных факторов.

4. Близнецовый метод. Этот метод заключается в изучении генетических закономерностей, присущих однояйцевым (монозигот-ным) и разнояйцевым (дизиготным) близнецам. Обычно сопоставляют монозиготных партнеров с дизиготными, а результаты анализа близнецовой выборки сравнивают с результатами анализа общей популяции. Метод позволяет выяснять наследственную предрасположенность в проявлении ряда признаков и заболеваний, устанавливать коэффициент наследуемости и степень влияния факторов внешней среды на проявление признаков. Успех в использовании этого метода чаще связан с изучением тех признаков, которые не подвержены резкому влиянию со стороны внешних факторов, например, группы крови, пигментации глаз и др. Недостаток метода связан с неполнотой сведений о пренатальном и постнатальном развитии близнецов.

5. Перенос генов. Под этим названием различают группу методов, позволяющих переносить гены от одних клеток к другим.

Гибридизация соматических клеток — это метод, основанный на том, что соматические клетки животных способны к гибридизации, при которой образуются гибриды клеток, в ядрах которых содержится набор хромосом обеих сходных клеточных линий, т. е. гибриды являются полиплоидами. В процессе роста гибриды могут терять отдельные хромосомы. Для гибридов, полученных из скрещиваний соматических клеток человека с соматическими клетками млекопитающих, характерно то, что преимущественно теряются человеческие хромосомы. Следовательно, наблюдение одновременной потери той или иной хромосомы и признака указывают на локализацию гена, контролирующего признак в данной хромосоме. В исходных скрещиваниях можно использовать также клетки человека с частично удаленными из них хромосомами. Метод имеет ограничения, определяемые невозможностью экспрессии чужеродных генов в гибридах.

Перенос хромосом — это метод, позволяющий выделить хромосомы и трансформировать ими клетки.

Перенос ДНК — это метод трансформации клеток очищенной ДНК. Метод позволяет переносить одновременно около 50 генов.

6. Молекулярно-генетические методы. Эти методы связаны с выделением ДНК, рестрикционным картированием, клонированием сегментов длиной до 50 000 пар оснований и секвенированием отдельных генов.

Кроме того ряд молекулярно-генетических методов направлен на разделение, идентификацию и измерение генных продуктов (белков). Подсчитано, что в клетках человека синтезируется около 30 000 разных белков. Поэтому ставится задача создать каталог белков и построить карту белков человека.

7. Моделирование наследственных болезней. Этот метод основан на законе Н. И. Вавилова о сходных рядах наследственности и заключается в моделировании наследственных болезней на животных, у которых встречаются отдельные из этих болезней, например, гемофилии на собаках. Кроме того, используют «сконструированные» линии лабораторных животных, обладающих теми или иными мутантными генами. Например, для изучения болезни Леша-Найяна используют белых мышей, полученных введением в их эмбрионы культивируемых клеток с дефектом по гипоксантин-фосфорибозилтрансферазе.

На основе результатов изучения наследственности человека создают генетические, молекулярные и белковые карты.

 








Дата добавления: 2015-12-29; просмотров: 1418;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.