Лекция 9 ДИНАМИКА МЕХАНИЧЕСКОЙ СИСТЕМЫ

Механическая система. Масса системы. Центр масс и его координаты. Теорема о движении центра масс. Свойства внутренних и внешних сил. Дифференциальные уравнения движения центра масс. Осевые моменты инерции тела

Механической системой называют систему материальных точек. Представим себе механическую систему и обозначим координаты i-й точки через xi, yi, zi.

Геометрическая точка С, определяемая координатами:
(1)

где M = åmi – масса всей системы называется центром инерции или центром масс системы. Умножив числитель и знаменатель в этих формулах на ускорение свободного падения g, получим выражения:

где Р – вес системы.

Очевидно, что центр инерции (ЦИ) совпадает с центром тяжести (ЦТ) системы. Понятие ЦИ гораздо шире, чем понятие ЦТ, т.к. ЦТ существует только, когда система находится в поле сил гравитации, а существование ЦИ не зависит от действия на систему каких-либо сил.

Положение центра инерции может быть также определено значением радиуса-вектора, проведенного в центр инерции из начала координатных осей. Обозначим радиус-векторы точек системы через , тогда

. (2)

Это векторное равенство равносильно предыдущим трем, т.к., проецируя обе части равенства (2) на координатные оси, получим равенство (1).








Дата добавления: 2015-12-26; просмотров: 821;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.