Дать основные определения, относящиеся к схемам замещения
Различают разветвленные и неразветвленные схемы.
На рис. 1.5 изображена неразветвленная схема.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Разветвленная схема - это сложная комбинация соединений пассивных и активных элементов.
Рис. 1.5 Рис. 1.6
Участок электрической цепи, по которому проходит один и тот же ток, называется ветвью. Место соединения трех и более ветвей электрической цепи называется узлом. Узел в схеме обозначается точкой.
Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением.
Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром.
5. Какие режимы работы электрических цепей Вы знаете?
Для электрической цепи наиболее характерными являются режимы работы: нагрузочный, холостого хода и короткого замыкания.
Нагрузочный режим работы (рис. 19, а).Рассмотрим работу электрической цепи при подключении к источнику какого-либо приемника с сопротивлением R (резистора, электрической лампы и т. п.).
На основании закона Ома э. д. с. источника равна сумме напря-
Рис. 19. Схемы, поясняющие нагрузочный режим работы (а) и режим холостого хода (б)
жений IR на внешнем участке цепи и IRo на внутреннем сопротивлении источника:
E = IR + IR0(12)
Учитывая, что напряжение Uи на зажимах источника равно падению напряжения IR во внешней цепи, получим:
E = Uи+IR0(13)
Эта формула показывает, что э. д. с. источника больше напряжения на его зажимах на значение падения напряжения внутри источника.Падение напряжения IRo внутри источника зависит от тока в цепи I (тока нагрузки), который определяется сопротивлением R приемника. Чем больше будет ток нагрузки, тем меньше напряжение на зажимах источника:
Uи= E – IR0(13′)
Падение напряжения в источнике зависит также и от внутреннего сопротивления Ro. Согласно уравнению (13′) зависимость напряжения Uи от тока I изображается прямой линией (рис. 20).Эту зависимость называют внешней характеристикой источника.
Из всех возможных нагрузочных режимов работы наиболее важным является номинальный.Номинальным называется режим работы, установленный заводом-изготовителем для данного электротехнического устройства в соответствии с предъявляемыми к нему техническими требованиями.Он характеризуется номинальными напряжением, током (точка Н на рис. 20) и мощностью.Эти величины обычно указывают в паспорте данного устройства.От номинального напряжения зависит качество электрической изоляции электротехнических установок, а от номинального тока — температура их нагрева, которая определяет площадь поперечного сечения проводников, теплостойкость применяемой изоляции и интенсивность охлаждения установки.Превышение номинального тока в течение длительного времени может привести к выходу из строя установки.
Режим холостого хода (рис. 19, б).При этом режиме присоединенная к источнику электрическая цепь разомкнута, т. е. тока в цепи нет. В этом случае внутреннее падение напряжения IRo будет равно нулю и формула (13) примет вид
E = Uи(14)
Таким образом, в режиме холостого хода напряжение на зажимах источника электрической энергии равно его э. д. с. (точка X на рис. 20).Это обстоятельство можно использовать для измерения э. д. с. источников электроэнергии.
Режим короткого замыкания (рис. 21).Коротким замыканием (к. з.) называют такой режим работы источника, когда его зажимы замкнуты проводником, сопротивление которого можно считать равным нулю. Практически к. з. возникает при соединении друг с другом проводов, связывающих источник с приемником, так как эти провода имеют обычно незна-
Рис. 20. Внешняя характеристика источника
чительное сопротивление и его можно принять равным нулю. К. з. может происходить в результате неправильных действий персонала, обслуживающего электротехнические установки (рис. 22, а), или при повреждении изоляции проводов (рис. 22,б, в); в последнем случае эти провода могут соединяться через землю, имеющую весьма малое сопротивление, или через окружающие металлические детали (корпуса электрических машин и аппаратов, элементы кузова локомотива и пр.).
При коротком замыкании ток
Iк.з = E / R0 (15)
Ввиду того что внутреннее сопротивление источника Ro обычно очень мало, проходящий через него ток возрастает до весьма больших значений.Напряжение же в месте к. з. становится равным нулю (точка К на рис. 20), т. е. электрическая энергия на участок электрической цепи, расположенный за местом к. з., поступать не будет.
Короткое замыкание является аварийным режимом, так как возникающий при этом большой ток может привести в негодность как сам источник, так и включенные в цепь приборы, аппараты и провода.Лишь для некоторых специальных генераторов, например сварочных, короткое замыкание не представляет опасности и является рабочим режимом.
В электрической цепи ток проходит всегда от точек цепи, находящихся под большим потенциалом, к точкам, находящимся под меньшим потенциалом. Если какая-либо точка цепи соединена с землей, то потенциал ее принимается равным нулю; в этом случае потен-
Рис. 21. Схема короткого замыкания в цепи источника электрической энергии
циалы всех других точек цепи будут равны напряжениям, действующим между этими точками и землей.
По мере приближения к заземленной точке уменьшаются потенциалы различных точек цепи, т. е. напряжения, действующие между этими точками и землей.
По этой причине обмотки возбуждения тяговых двигателей и вспомогательных машин, в которых при резких изменениях тока могут возникать большие перенапряжения, стараются включать в силовую цепь ближе к «земле» (за обмоткой якоря).В этом случае на изоляцию этих обмоток будет действовать меньшее напряжение, чем если бы они были включены ближе к контактной сети на электровозах постоянного тока или к незаземленному полюсу выпрямительной установки на электровозах переменного тока (т.е. находились бы под более высоким потенциалом).Точно также точки электрической цепи, находящиеся под более высоким потенциалом, являются более опасными для человека, соприкасающегося с токоведущими частями электрических установок.При этом он попадает под более высокое напряжение по отношению к земле.
Следует отметить, что при заземлении одной точки электрической цепи распределение токов в ней не изменяется, так как при этом образуется никаких новых ветвей, по которым могли бы протекать токи.Если заземлить две (или больше) точки цепи, имеющие разные потенциалы, то через землю образуются дополнительная токопроводящая ветвь (или ветви) и распределение тока в цепи меняется.
Следовательно, нарушение или пробой изоляции электрической установки, одна из точек которой заземлена, создает контур, по которому проходит ток, представляющий собой, по сути дела, ток короткого замыкания.То же происходит в незаземленной электрической установке при замыкании на землю двух ее точек.При разрыве электрической цепи все ее точки до места разрыва оказываются под одним и тем же потенциалом.
Рис. 22. Возможные причины короткого замыкания в электрических установках
7. Последовательное соединение элементов
электрических цепей
На рис. 2.1 изображена электрическая цепь с последовательно соединенными сопротивлениями.
Рис. 2.1
Напряжение на зажимах источника ЭДС равно величине электродвижущей силы. Поэтому часто источник на схеме не изображают.
Падения напряжений на сопротивлениях определяются по формулам
В соответствии со вторым законом Кирхгофа, напряжение на входе электрической цепи равно сумме падений напряжений на сопротивлениях цепи.
где - эквивалентное сопротивление.
Эквивалентное сопротивление электрической цепи, состоящей из n последовательно включенных элементов, равно сумме сопротивлений этих элементов.
8.Описать метод расчета параллельного соединение элементов электрических цепей на следующем примере:
Токи в параллельных ветвях определяются по формулам:
где - проводимости 1-й, 2-й и n-й ветвей.
В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях.
где
Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов.
Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости
Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R
одного элемента
9. Описать метод расчета электрических цепей постоянного тока с одним источником методом свертывания на следующем примере:
В соответствии с методом свертывания, отдельные участки схемы упрощают и постепенным преобразованием приводят схему к одному эквивалентному (входному) сопротивлению, включенному к зажимам источника. Схема упрощается с помощью замены группы последовательно или параллельно соединенных сопротивлений одним, эквивалентным по сопротивлению. Определяют ток в упрощенной схеме, затем возвращаются к исходной схеме и определяют в ней токи.
Рассмотрим схему на рис. 3.1. Пусть известны величины сопротивлений R1, R2, R3, R4, R5, R6, ЭДС Е. Необходимо определить токи в ветвях схемы.
Сопротивления R4 и R5 соединены последовательно, а сопротивление R6 - параллельно с ними, поэтому их эквивалентное сопротивление
После проведенных преобразований схема принимает вид, показанный на рис. 3.2, а эквивалентное сопротивление всей цепи
Ток I1 в неразветвленной части схемы определяется по формуле:
Найдем токи I2 и I3 в схеме на рис. 3.2 по формулам:
I3 = I1 - I2 - формула получается из уравнения, составленного по первому закону Кирхгофа:
I1 - I2 - I3 = 0.
Переходим к исходной схеме на рис. 3.1 и определим токи в ней по формулам:
I6 = I3 - I4 (в соответствии с первым законом Кирхгофа I3 - I4 - I6 =0).
10.Дать основные определения нелинейных электрических цепей постоянного тока?
В линейной электрической цепи сопротивления ее элементов не зависят от величины или направления тока или напряжения. Вольтамперные характеристики линейных элементов (зависимость напряжения на элементе от тока) являются прямыми линиями.
В нелинейной электрической цепи сопротивления ее элементов зависят от величины или направления тока или напряжения.
Нелинейные элементы имеют криволинейные вольтамперные характеристики, симметричные или несимметричные относительно осей координат.
Сопротивления нелинейных элементов с симметричной характеристикой не зависят от направления тока.
Сопротивления нелинейных элементов с несимметричной характеристикой зависят от направления тока. Например, электролампы, термисторы имеют симметричные вольтамперные характеристики (рис. 5.1), а полупроводниковые диоды - несимметричные характеристики (рис. 5.2).
Рис. 5.1 Рис. 5.2
Статическим или интегральным сопротивлением нелинейного элемента называется отношение напряжения на элементе к величине тока. Это сопротивление пропорционально тангенсу угла наклона α между осью тока и прямой, проведенной из начала координат в точку а характеристики (рис. 5.3)
.
Рис. 5.3 Рис. 5.4
Дифференциальное или динамическое сопротивление нелинейного элемента - это величина, равная отношению бесконечно малого приращения напряжения на нелинейном сопротивлении к соответствующему приращению тока.
Это сопротивление пропорционально тангенсу угла наклона β между осью тока и касательной к точке a характеристики (рис. 5.4).
.
При переходе от одной точки вольтамперной характеристики к соседней статическое и динамическое сопротивления нелинейного элемента меняются.
Статическое и динамическое сопротивления линейного элемента одинаковы и не зависят от тока или напряжения.
11. Как производится графический метод расчета нелинейных цепей постоянного тока?
При использовании этих методов задача решается путем графических построений на плоскости. При этом характеристики всех ветвей цепи следует записать в функции одного общего аргумента. Благодаря этому система уравнений сводится к одному нелинейному уравнению с одним неизвестным. Формально при расчете различают цепи с последовательным, параллельным и смешанным соединениями.
а) Цепи с последовательным соединением резистивных элементов.
При последовательном соединении нелинейных резисторов в качестве общего аргумента принимается ток, протекающий через последовательно соединенные элементы. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси напряжений откладывается точка, соответствующая в выбранном масштабе заданной величине напряжения на входе цепи, из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось токов – полученная точка соответствует искомому току в цепи, по найденному значению которого с использованием зависимостей определяются напряжения на отдельных резистивных элементах.
Применение указанной методики иллюстрируют графические построения на рис. 2,б, соответствующие цепи на рис. 2,а.
Графическое решение для последовательной нелинейной цепи с двумя резистивными элементами может быть проведено и другим методом –методом пересечений.В этом случае один из нелинейных резисторов, например, с ВАХ на рис.2,а, считается внутренним сопротивлением источника с ЭДС Е, а другой – нагрузкой. Тогда на основании соотношения точка а (см. рис. 3) пересечения кривых и определяет режим работы цепи. Кривая строится путем вычитания абсцисс ВАХ из ЭДС Е для различных значений тока.
Использование данного метода наиболее рационально при последовательном соединении линейного и нелинейного резисторов. В этом случае линейный резистор принимается за внутреннее сопротивление источника, и линейная ВАХ последнего строится по двум точкам.
б) Цепи с параллельным соединением резистивных элементов.
При параллельном соединении нелинейных резисторов в качестве общего аргумента принимается напряжение, приложенное к параллельно соединенным элементам. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси токов откладывается точка, соответствующая в выбранном масштабе заданной величине тока источника на входе цепи (при наличии на входе цепи источника напряжения задача решается сразу путем восстановления перпендикуляра из точки, соответствующей заданному напряжению источника, до пересечения с ВАХ ), из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось напряжений – полученная точка соответствует напряжению на нелинейных резисторах, по найденному значению которого с использованием зависимостей определяются токи в ветвях с отдельными резистивными элементами.
Использование данной методики иллюстрируют графические построения на рис. 4,б, соответствующие цепи на рис. 4,а.
в) Цепи с последовательно-параллельным (смешанным) соединением резистивных элементов.
1. Расчет таких цепей производится в следующей последовательности:
Исходная схема сводится к цепи с последовательным соединением резисторов, для чего строится результирующая ВАХ параллельно соединенных элементов, как это показано в пункте б).
2. Проводится расчет полученной схемы с последовательным соединением резистивных элементов (см. пункт а), на основании которого затем определяются токи в исходных параллельных ветвях.
12. Дать основные определения электрические цепи однофазного переменного тока?
В соответствии с методом свертывания, отдельные участки схемы упрощают и постепенным преобразованием приводят схему к одному эквивалентному (входному) сопротивлению, включенному к зажимам источника. Схема упрощается с помощью замены группы последовательно или параллельно соединенных сопротивлений одним, эквивалентным по сопротивлению. Определяют ток в упрощенной схеме, затем возвращаются к исходной схеме и определяют в ней токи.
Рассмотрим схему на рис. 3.1. Пусть известны величины сопротивлений R1, R2, R3, R4, R5, R6, ЭДС Е. Необходимо определить токи в ветвях схемы.
Рис. 3.1 Рис. 3.2
Сопротивления R4 и R5 соединены последовательно, а сопротивление R6 - параллельно с ними, поэтому их эквивалентное сопротивление
После проведенных преобразований схема принимает вид, показанный на рис. 3.2, а эквивалентное сопротивление всей цепи
Ток I1 в неразветвленной части схемы определяется по формуле:
Найдем токи I2 и I3 в схеме на рис. 3.2 по формулам:
I3 = I1 - I2 - формула получается из уравнения, составленного по первому закону Кирхгофа:
I1 - I2 - I3 = 0.
Переходим к исходной схеме на рис. 3.1 и определим токи в ней по формулам:
I6 = I3 - I4 (в соответствии с первым законом Кирхгофа I3 - I4 - I6 =0).
Дата добавления: 2015-12-26; просмотров: 2320;