Метаболизм фенилаланина и тирозина
Фенилаланин – незаменимая аминокислота, так как в клетках животных не синтезируется ее бензольное кольцо. Метаболизм метионина осуществляется по 2-м путям: включается в белки или превращается в тирозин под действием специфической монооксигеназы – фенилаланингидроксилазы. Данная реакция необратима и играет важную роль в удалении избытка фенилаланина, так как высокие концентрации его токсичны для клеток.
Обмен тирозина значительно сложнее. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений как катехоламины, тироксин, меланин и др.
В печени происходит катаболизм тирозина до конечных продуктов фумарата и ацетоацетата. Фумарат может окислятся до СО2 и Н2О или использоваться для глюконеогенеза.
Превращение тирозина в меланоцитах. Он является предшественником меланинов. Синтез меланинов – сложный многоступенчатый процесс, первую реакцию – превращение тирозина в ДОФА – катализирует тирозиназа, использующая в качестве кофактора ионы меди.
В щитовидной железе из тирозина синтезируются гормоны тироксин и трийодтиронин.
В мозговом веществе надпочечников и нервной ткани тирозин является предшественником катехоламинов. Промежуточным продуктом их синтеза является ДОФА. Однако в отличие от меланоцитов, гидроксилирование тирозина осуществляется под действием тирозингидроксилазы, которая является Fe2+- зависимым ферментом, и его активность регулирует скорость синтеза катехоламинов.
Нарушение обмена фенилаланина и тирозина
Фенилкетонурия
В печени здоровых людей небольшая часть фенилаланина (до 10%) превращается в фениллактат и фенилацетилглутамин. Этот путь катаболизма фенилаланина становится главным при нарушении основного пути – превращения в тирозин, катализируемого фенилаланингидроксилазой. Такое нарушение сопровождается гиперфенилаланинемией и повышением в крови и моче содержания фенилаланина и его метаболитов альтернативного пути. Классическая фенилкетонурия – наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы. Наиболее тяжелые проявления фенилкетонурии – нарушение умственного и физического развития, судорожный синдром, нарушение пигментации. Эти проявления связаны с токсическим действием на клетку высоких концентраций фенилаланина, фенилпирувата, фениллактата.
Тирозинемии
Наследственные нарушения метаболизма тирозина в печени. Известно два типа.
I тип – дефект фермента фумарилацетоацетатгидроксилазы, из-за которого накапливаются в крови токсические метаболиты что приводит к тяжелому поражению печени и почек.
При II типе нет фермента тирозинаминотрансферазы. Повышется концентрация тирозина, наблюдается гиперкератоз ладоней и подошв.
Алкаптонурия
Причина заболевания – дефект диоксигеназы гомогентизиновой кислоты. Для этой болезни характерно выделение с мочой большого количества гомогентизиновой кислоты, которая, окисляясь воздухом, образует темные пигменты алкаптоны. Кроме того наблюдается пигментация соединительной ткани. Умственное и физическое развитие не нарушено.
Альбинизм
Обусловлен отсутствием тирозиназы и, соответственно, нарушается синтез пигментов меланинов. Клиническое проявление – отсутствие пигментации кожи и волос. Умственное развитие не страдает. У людей с альбинизмом повышенная склонность к солнечным ожогам.
ГЛАВА 26
обмЕн нуклеотидов
Практически все клетки организма способны к синтезу нуклеотидов (исключение составляют некоторые клетки крови). Другим источником этих молекул могут быть нуклеиновые кислоты собственных тканей и пищи, однако эти источники имеют лишь второстепенное, вспомогательное значение.
Пуриновые и пиримидиновые нуклеотиды являются существенными компонентами клеток. Они или их производные выполняют различные функции:
· Нуклеозидтрифосфаты (НТФ) используются в качестве субстратов синтеза ДНК и РНК, без которых невозможны образование белков и клеточная пролиферация.
· Природа выбрала цикл АДФ-АТФ в качестве универсального механизма трансформации энергии окисления в энергию биосинтетических процессов. В некоторых биологических процессах и другие НТФ используются в качестве источника энергии.
· Производные нуклеотидов служат донорами активных субстратов в синтезе гомо- и гетерополисахаридов, липидов и белков. Например: УДФ-глюкоза, УДФ-галактоза, ГДФ-манноза, УДФ-N-ацетилглюкозамин или ЦМФ-ацетилнейраминовая кислота принимают участие в синтезе гликогена и гликозаминогликанов; ЦДФ-холин – в синтезе фосфолипидов.
· УДФ-глюкуроновая кислота, ФАФС, S-аденозилметионин – наиболее частые участники универсальной системы детоксикации, обеспечивающей последующее выведение ксенобиотиков (чужеродных веществ) и некоторых собственных метаболитов из организма.
· АМФ входит в состав коферментов дегидрогеназ (НАД+, НАДФ+, ФАД, ФМН) и ацилирования (КоА).
· С помощью циклических форм нуклеотидов (цАМФ, цГМФ) осуществляется передача в клетку сигналов гормонов, факторов роста, нейромедиаторов и некоторых других регуляторных молекул.
Дата добавления: 2015-12-22; просмотров: 1013;