Закономерности развития психики и мозга 1 страница
Различные структуры мозга достигают зрелости на разных стадиях онтогенеза (индивидуального развития человека от зачатия до конца жизни), поэтому для каждого возрастного периода характерны специфические нейрофизиологические условия формирования и развития психических функций. В свою очередь, каждый ребенок имеет индивидуальные особенности развития и обучения.
Большие полушария головного мозга, и прежде всего его кора, представляют собой сложнейшие дифференцированные образования. Дисфункция, или незрелость, у детей различных участков головного мозга приводит к соответствующим расстройствам высших психических функций (ВПФ). Они не даны ребенку изначально в готовом виде и проходят длительный гетерохронный и асинхронный путь развития, начиная с внутриутробного периода, когда закладываются их предпосылки. В качестве функциональных критериев развития мозга выделяют биоэлектрические, рефлекторные и поведенческие показатели.
Основными компонентами головного мозга, которые участвуют в формировании ВПФ, являются лимбическая система и большие полушария.
Лимбическая система является связующим звеном между корой больших полушарий и телом. Единство с телом вызывает физические признаки эмоций (краска стыда, улыбка радости). Лимбическая система производит эмоции, которые, в свою очередь, либо усиливают, либо ослабляют иммунную систему. Они же непосредственно влияют на качество обучения, поэтому крайне важно познавательные процессы детей подкреплять положительными эмоциями.
Лимбическая система состоит из пяти основных структур: таламуса, гипоталамуса, миндалевидного тела, гиппо-кампа и базального ганглия.
Таламус работает как «распределительная станция» для всех поступающих в мозг ощущений, кроме обонятельных. Он также передает двигательные импульсы из коры головного мозга по спинному мозгу на мускулатуру. Кроме того, таламус распознает ощущения боли, температуры, легкого прикосновения и давления, а также участвует в эмоциональных процессах и работе памяти.
Гипоталамус контролирует работу гипофиза, нормальную температуру тела, потребление пищи, состояние сна и бодрствования. Он также является центром, ответственным за поведение в экстремальных ситуациях, проявления ярости, агрессии, боли и удовольствия.
Миндалевидное тело связано с зонами мозга, ответственными за обработку познавательной и чувственной информации, а также с зонами, имеющими отношение к комбинациям эмоций. Миндалевидное тело координирует реакции страха или беспокойства, вызванные внутренними сигналами.
Гиппокамп использует сенсорную информацию, поступающую из таламуса, и эмоциональную из гипоталамуса для формирования кратковременной памяти. Кратковременная память, активизируя нервные сети гиппокампа, может далее перейти в «долговременное хранилище» и стать долговременной памятью для всего мозга.
Базальный ганглий управляет нервными импульсами между мозжечком и передней долей мозга и тем самым помогает контролировать движения тела. Он способствует контролю за тонкой моторикой лицевых мышц и глаз, отражающих эмоциональные состояния. Базальный ганглий связан с передней долей мозга через черную субстанцию. Он координирует мыслительные процессы, участвующие в планировании порядка и слаженности предстоящих действий во времени.
Обработка всей эмоциональной и познавательной информации в лимбической системе имеет биохимическую природу: происходит выброс определенных нейротрансмит-теров (от лат. transmuto — передаю; биологические вещества, которые обусловливают проведение нервных импульсов). Если познавательные процессы протекают на фоне положительных эмоций, то вырабатываются такие нейро-трансмиттеры, как гамма-аминомасляная кислота, ацетил-холин, интерферон и интерклейкины. Они активизируют мышление и делают запоминание более эффективным. Если же процессы обучения построены на негативных эмоциях, то высвобождаются адреналин и кортизол, которые снижают способность к учению и запоминанию
Развитие лимбической системы позволяет ребенку устанавливать социальные связи. В возрасте от 15 месяцев до 4 лет в гипоталамусе и миндалевидном теле генерируются примитивные эмоции: ярость, страх, агрессия. По мере развития нервных сетей образуются связи с кортикальными (корковыми) отделами височных долей, ответственными за мышление, появляются более сложные эмоции с социальным компонентом: злость, печаль, радость, огорчение. При дальнейшем развитии нервных сетей формируются связи с передними отделами мозга и развиваются такие тонкие чувства, как любовь, альтруизм, сопереживание, счастье.
По мере дальнейшего развития лимбической системы нервные сети соединяют сенсорные (зрительные, слуховые, обонятельные, вкусовые, кинестетические) и моторные схемы с эмоциями и образуют память. Она конструируется из нервных путей, которые связываются в нервные схемы. Эти схемы постоянно модифицируются и дополняются в бесконечном числе комбинаций. Они могут быть модифицированы, реорганизованы или сокращены для большей эффективности. Схемы связаны с мозговыми центрами, где происходит обработка специализированной сенсорной информации. Например, затылочная область мозга отвечает за зрительную информацию, височная — за слуховую. Необходимо помнить, что 90% основных схем формируются за первые пять лет жизни ребенка, как и основной шаблон нервных сетей, который затем может достраиваться. Именно этот шаблон является материальной основой индивидуальности мышления, памяти, способностей, поведения. Схемы каждого человека специфичны, уникальны и не повторяют одна другую. Следовательно, можно говорить, что для каждого ребенка необходимо разрабатывать свою индивидуальную программу обучения и развития.
По мере формирования лимбической системы создаются предпосылки для развития воображения. Альберт Эйнштейн считал, что «воображение важнее, чем знание, так как знание говорит обо всем, что есть, а воображение — обо всем, что будет». Воображение развивается на базе синтеза мотор-но-сенсорных схем, эмоций и памяти (К. Ханнафорд).
Большие полушария являются основной структурной единицей головного мозга человека. Сверху полушария покрывает кора, или неокортекс. Кора состоит из нейронов (клетки, образующие нервную систему; формируются в дородовой период, но продолжают расти и образовывать отростки в течение всей жизни человека), расположенных тонким слоем (от 2 до 5 мм), покрывающим поверхность мозговых извилин. Она содержит более 10—20 миллиардов нервных клеток, в основном относящихся к большой промежуточной сети ассоциированных нейронов. Глиальные клетки (изоляторы нейронов, повышающие эффективность передачи нервных импульсов) образуют поддерживающую сеть, выстилая структуры головного и спинного мозга. Некоторые из глиальных клеток соединяют нервную ткань с поддерживающими структурами, а нейроны — с кровеносными сосудами.
Если расправить складки неокортекса, он займет площадь в 2500 см2. Каждые 60 сек он использует более 0,5 л крови и ежедневно сжигает 400 ккал. Неокортекс составляет только 25% общего объема головного мозга, однако содержит примерно 85% всех нейронов.
Неокортекс состоит из серого вещества, немиелинизи-рованных клеточных тел нейронов (миелинизация — процесс образования миелиновой оболочки, покрывающей быстродействующие проводящие пути центральной нервной системы. Миелиновые оболочки повышают точность и скорость передачи импульсов в нервной системе). Тела нейронов обладают неограниченными возможностями формирования новых дендритов (ветвящийся отросток, воспринимающий сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей; проводит нервные импульсы к телу нейрона) и реорганизации дендритных сетей под воздействием нового опыта, приобретаемого в течение жизни. Установлено, что нервные сети в неокортексе взрослого человека содержат более квадриллиона (миллиона миллиардов) связей и могут обрабатывать до 1000 битов новой информации в секунду. Это значит, что число сигналов, которое может одновременно передаваться через синапсы (соединения) мозга, превышает число атомов в известной области Вселенной.
Нейрохирург Уилдер Пенфилд в 1930-х годах в процессе операций на мозге определил функции различных его зон и составил их подробную карту. Он обнаружил, что в самом мозге нет болевых рецепторов. Это дало ему возможность проводить операции на мозге под местным наркозом. Пенфилд использовал слабую электростимуляцию и обсуждал с пациентом, находящимся в сознании, то, что происходит. В настоящее время для исследования зон и функций мозга используется лазерное сканирование, метод магнитного резонанса, позитронно-эмиссионная томография
Каждое полушарие мозга состоит из затылочной, височной, теменной и лобной долей.
Затылочная доля получает сенсорные импульсы от глаз, опознает форму, цвет и движение. Кроме того, она ассоциативно соотносит прежний зрительный опыт с настоящим, узнает и оценивает увиденную информацию.
Височная доля распознает основные характеристики звука, его высоту и ритм. Область слуховых ассоциаций («центр Вернике» — височные доли) понимает речь. Вестибулярная область в височной доле воспринимает сигналы от полукружных каналов уха и интерпретирует чувства гравитации, баланса и вибрации. Обонятельный центр отвечает за ощущения, вызываемые запахом. Все эти области непосредственно связаны с центрами памяти в лимбической системе.
Теменная доля распознает прикосновение, давление, боль, тепло, холод без зрительных ощущений. В ней же находится вкусовой центр, ответственный за ощущение сладкого, кислого, горького и соленого.
Лобная доля контролирует мышцы по всему телу. Область моторных ассоциаций лобной доли отвечает за приобретенную двигательную активность. Передний центр зрительного поля контролирует произвольное сканирование глаз. Центр Брока переводит мысли к внешней, а затем и внутренней речи, которая развилась в процессе эволюции в той же зоне мозга, что и тонкая моторика рук. Связь этих зон мозга используется в коррекционной работе. Кроме того, лобная доля контролирует социальное поведение, осуществляет синтез мыслей и эмоций через таламоцингулятор-ный (базальный) ганглий лимбической системы и приводит к возникновению таких чувств, как сопереживание, любовь, благоговение перед жизнью. Связь лобной доли с лимбической системой и социальным поведением влияет на развитие альтруизма и эмпатии. Нормально развитая лобная доля собирает информацию со всего остального мозга и синтезирует ее в мышление.
Познавательный (гностический) центр представляет собой интегрированную область всех четырех долей мозга. Он получает импульсы вкуса и запаха, сенсорную информацию от таламуса и нижних частей ствола мозга. Он интегрирует сенсорные сигналы, идущие из ассоциативных центров. Для того чтобы произошел соответствующий физический ответ, сигналы передаются в различные области мозга через лим-бическую систему и ствол мозга.
Все доли мозга, как правило, воспринимают внешние стимулы и информацию от противоположной стороны тела через ствол мозга и лимбическую систему.
Первичное восприятие и обработка стимула осуществляются в правом полушарии, затем информация передается в левое полушарие. В пространственном представлении восприятие происходит слева направо и сверху вниз. На уровне мозга перенос информации идет за счет электрохимических, электрофизических и других процессов. Недавние исследования американских ученых показали, что обмен информацией между правым и левым полушариями происходит не одинаково. Правое полушарие обладает некоторым преимуществом. Информация из него передается в левое полушарие по нервным путям, образующим мозолистое тело. В то время как информация в обратном направлении (из левого в правое) передается по совершенно другим нервным путям (B.C. Ротенберг). Анатомически оба полушария как бы насажены на ствол мозга, где находятся все жизненно важные центры. Связь между полушариями предположительно может осуществляться и через стволовые каналы.
Как известно, биологическое развитие организма в онтогенезе подчиняется строгой закономерности на всех его стадиях. У каждой психической функции и функционального звена есть своя программа развития, включающая относительную дискретность, гетерохронию, фазовые динамические характеристики процессов формирования. Знание схемы развития способствует более четкому разведению случаев органической и функциональной недостаточности мозга, вариантов его информированности, т.е. дифференцированному подходу к отклонениям от нормы (дизонтогенез).
Биологический смысл гетерохронного созревания мозга заключается в том, что корковым, подкорковым и стволовым образованиям необходимо как можно скорее начать функционировать и обеспечивать жизненно важные функции ребенка. Морфогенез (созревание) центральной нервной системы протекает в соответствии с четкой программой, контролируемой генетически и продолжающейся после рождения. Неокортекс постоянно наращивает нервные сети, которые идут к стволу мозга и лимбической системе. Это сложный непрерывный процесс, который протекает индивидуально у каждого человека. Существует общая схема ней-ропсихологического развития человека (нейропсихологическая петля развития), которую предложил А.Р. Лурия. Схему развития центральной нервной системы в пренаталь-ный (дородовой) период разработал H.H. Заваденко. Она представлена в табл. 1.
Таблица 1
Сроки | Развитие ЦНС в преднатальный период |
онтогенеза | Стадия эмбриона |
2—3 недели | Формирование невральной пластинки |
3—4 недели | Закрытие невральной трубки |
4 недели | Образование трех мозговых пузырей |
5 недели | Образование пяти мозговых пузырей |
7 недели | Рост полушарий мозга, начало полиферации нейробластов |
2мес. | Рост мозговой коры с гладкой поверхностью |
Стадии плода | |
2,5 мес. | Утолщение мозговой коры |
3 мес. | Начало формирования мозолистого тела и роста глии |
4 мес. | Рост долек и борозд в мозжечке |
5 мес. | Формирование мозолистого тела, рост первичных борозд и гистологических слоев |
6 мес | Дифференциация слоев коры, миелинизация. образование синаптических связей, формирование межполушарной асимметрии и межполовых различий |
7 мес. | Появление шести клеточных слоев, борозд, извилин, асимметрии полушарий |
8—9 мес. | Быстрое развитие вторичных и третичных борозд и извилин, развитие асимметрии в строении мозга, особенно в области височных долей |
Э. Кречмер сформулировал две основные закономерности: при развитии высших ступеней мозга низшие не отходят в сторону и не исчезают, а «работают в общем союзе, как подчиненные инстанции под управлением высших»; функции переходят снизу вверх, в результате чего устанавливается сложная зависимость между низшим уровнем организации мозга и высшим. Например, у ребенка не может сформироваться речь, если ей не предшествовал процесс восприятия. Локализация одной и той же функции меняется в процессе созревания мозга и ВПФ.
Постнатальное (послеродовое) развитие мозга происходит не только за счет увеличения нейронов, но и за счет формирования связей между ними. При рождении мозг ребенка весит 350 г, что составляет 25% веса мозга взрослого человека. Он растет за счет увеличения сети дендритов и глиальных клеток со скоростью 1 млг/мин, достигая 50% веса мозга взрослого человека к 6 месяцам, 75% — к 2,5 годам и 90% — к 5 годам. Исследования показали, что ребенок рождается с созревшими подкорковыми образованиями (ретикулярная формация, гипоталамус, гиппокамп, таламические ядра, миндалевидное ядро, хвостатое ядро и др.). Первичные,вторичные и третичные корковые поля формируются прижизненно, не одновременно, при определенных социальных условиях.
Схема этапов развития коры больших полушарий в пост натальный период, разработанная К. Ханнафорд, представлена в табл. 2.
Таблица 2
Возраст | Этапы развития области головного мозга | Функции |
От зачатия до 15 мес | Стволовые стр> к-туры | Основные потребности выживания — питание, укрытие, защита, безопасность. Сенсорное развитие вестибулярного аппарата, слуха, тактильных ощущений, обоняния, вкуса, зрения |
15 мес — 4,5 г | Лимбичсская система | Развитие эмоциональной и речевой сферы, воображения, памяти, овладение грубыми моторными навыками |
4,5-7 лет | Правое (образное) полушарие | Обработка в мозге целостной картины на основе образов, движения, ритма, эмоций, интуиции, внешней речи, интегрированного мышления |
7—9 лет | Левое (логическое) полу шарие | Детальная и линейная обработка информации, совершенствование навыков речи, чтения и письма, счета, рисования, танцевальных, восприятия музыки, моторики рук |
8 лет | Лобная доля | Совершенствование нав ы-ков тонкой моторики, становление внутренней речи, контроль социального поведения. Развитие и коо р-динация движений глаз: слежение и фокусирование |
9—12 лет | Мозолистое тело и миелинизация | Комплексная обработка информации всем мозгом |
12—16 лет | Гормональный всплеск | Формирование знаний о себе, своем теле. Уяснение значимости жизни, появление общественных интересов |
16—21 год | Целостная система интеллекта и тела | Планирование будущего, анализ новых идей и возможностей |
21 год и далее | Интенсивный скачок в развитии нервной сети лобных долей | Развитие системного мышления, уяснение причинных связей высшего уровня, совершенствование эмоций (альтруизм, любовьсочув-ствие) и тонких моторных навыков |
Созревание мозга — процесс длительный и неравномерный по его зонам и уровням в соответствии с возрастными этапами. Развитие мозга идет путем напластования и надстройки новых уровней над старыми, как отмечал Л.С. Выготский. Старый уровень переходит в новый, существует в нем, создавая его базис. Формирование парной работы мозга в онтогенезе проходит ряд этапов.
Первый этап (от внутриутробного периода до 2—3 лет). Формируются транскортикальные связи стволового уровня — мозговые спайки гипоталамо-диэнцефальной области—и базалъные ядра. Закладывается базис (первый функциональный блок мозга) для межполушарного обеспечения нейрофизиологических, нейрогуморальных, сенсорно-вегетативных и нейрохимических асимметрий, лежащих в основе соматического (телесного), аффективного и когнитивного статуса ребенка.
Первый функциональный блок мозга обеспечивает регуляцию тонуса и бодрствования. Структуры мозга первого блока находятся в стволовых и подкорковых образованиях, которые одновременно тонизируют кору и испытывают ее регулирующее влияние. Главным мозговым образованием, обеспечивающим тонус, является ретикулярная (сетевид-ная) формация, открытая Мэгуном и Морушги. Восходящие и нисходящие волокна ретикулярной формации представляют собой саморегулирующееся образование мозга.
На этом этапе впервые заявляют о себе глубинные ней-робиологические предпосылки формирования будущего стиля психической и учебной деятельности ребенка.
Церебральные (мозговые) системы организуют сенсомо-торные горизонтальные и вертикальные взаимосвязи. Еще внутриутробно ребенок сам определяет ход своего развития. Если мозг по уровню своего развития не готов к моменту родов, то возможна родовая травма. Процесс рождения во многом зависит от деятельности организма самого ребенка. Он должен преодолеть давление родовых путей матери, совершить определенное количество поворотов и отталкивающих движений, адаптироваться к действию сил гравитации и др. Следовательно, не только мама вынашивает и рождает ребенка, но и ребенок вынашивается и рождается сам. Успешность рождения зависит от достаточности церебральных систем мозга. По этим причинам велика вероятность дизон-тогенетического развития детей, рожденных при помощи кесарева сечения, недоношенных или переношенных.
Второй этап (от 3 до 7—8 лет). Характеризуется активизацией межгиппокампальных комиссуральных (комиссу-ры — нервные волокна, осуществляющие взаимодействие между полушариями) систем, которые играют важную роль в обеспечении полисенсорной, межмодальной, эмоцио-налъно-мотивационной интеграции. Эта зона мозга обеспечивает межполушарную организацию процессов запоминания. На этом отрезке онтогенеза закрепляются меж-полушарные асимметрии, формируется преобладающая функция полушарий по речи, индивидуальному латеральному профилю (сочетание доминантного полушария и ведущей руки, ноги, глаза, уха), функциональной активности. Нарушение формирования этого уровня мозга может привести к возникновению псевдолеворукости.
Второй функциональный блок принимает, перерабатывает и хранит информацию. Он расположен в наружных отделах новой коры мозга и занимает ее задние отделы, включая зрительную (затылочную), слуховую (височную) и общечувствительную (теменную) зоны коры. Эти зоны мозга принимают зрительную, слуховую, вестибулярную (общечувствительную) и кинестетическую информацию. Сюда же относятся и центральные зоны вкусовой и обонятельной рецепции. Основные модально-специфические зоны второго блока построены по ели-ному принципу иерархической организации, который в 1905 году сформулировал Кэмпбелл. Любое предметное восприятие является результатом полимодальной деятельности, которая первоначально в онтогенезе имеет развернутый характер и лишь затем становится свернутой. Следовательно, такая деятельность должна опираться на совместную работу зон коры головного мозга.
Для созревания функций левого полушария необходимо нормальное течение онтогенеза правого полушария. Например, известно, что фонематический слух (смыслоразличе-ние звуков речи) является функцией левого полушария. Но, прежде чем стать звеном звукоразличения, он должен сформироваться и автоматизироваться как тональное звукоразли-чение в правом полушарии при помощи всестороннего взаимодействия ребенка с окружающим миром. Дефицит или несформированность этого звена в онтогенезе фонематического слуха могут привести к задержкам речевого развития.
Третий этап (от 7 до 12—15 лет). Происходит становление межполушарного взаимодействия, формируются транс-каллозальные связи. До этого мозолистое тело (толстый пучок нервных волокон, соединяющих два полушария) обеспечивало взаимодействие задних отделов правого и левого полушарий и контролировало нижележащие комиссу-ральные уровни. В 12—15 лет морфологическая и функциональная зрелость мозолистого тела обеспечивают взаимодействие лобных (префронтальных) отделов правого и левого полушарий на регуляторном уровне (третий функциональный блок мозга). Происходит формирование когнитивных стилей личности и обучения, закрепление приоритета лобных отделов левого полушария. Это позволяет ребенку выстраивать собственные программы поведения, ставить перед собой цели, контролировать их выполнение, рефлексировать (рефлексия — самоанализ, процесс познания самого себя), произвольно регулировать свое поведение, эмоции, речь. Третий блок организует активную, сознательную психическую деятельность. Человек формирует планы и программы своих действий, следит за их выполнением и регулирует свое поведение. Кроме того, он контролирует свою сознательную деятельность, сличая эффект своих действий с исходными намерениями и корригируя допущенные ошибки. Наиболее существенной частью третьего блока являются префронталъные отделы, которые играют решающую роль в формировании намерений и программ. Лобные доли мозга обладают мощными пучками восходящих и нисходящих связей с ретикулярной формацией, за счет которых получают импульсы от систем первого функционального блока, с одной стороны, «заряжаясь» от него, а с другой — контролируя его деятельность. Этот транскортикальный уровень наиболее уязвим. При любой девиации (отклонении) формирования нижележащих структур рассматриваемые функциональные системы будут развиваться в условиях постоянного энергетического обкрадывания. Практически не существует варианта дезадаптивного поведения человека, при котором не обнаруживался бы дефицит этого уровня психической деятельности.
Итак, после созревания гипоталамо-диэнцефальных структур мозга (стволовой отдел) начинается созревание правого полушария, а затем левого. Созревание мозолистого тела, как уже отмечалось, завершается только к 12—15
годам. До этого возраста межполушарное взаимодействие (особый механизм объединения левого и правого полушарий мозга в единую интегративно целостную систему, формирующийся в онтогенезе) осуществляется при помощи комиссур. Созревание мозга в норме происходит снизу вверх, от правого полушария к левому, от задних отделов мозга — к передним. Интенсивный рост лобной доли начинается не ранее 8 лет и заканчивается к 12—15 годам. В онтогенезе лобная доля закладывается первой, а заканчивает свое развитие последней. Развитие центра Брока в лобной доле делает возможным обработку информации за счет внутренней речи, что значительно быстрее, чем при вербализации.
Специализация больших полушарий у каждого ребенка происходит с разной скоростью. В среднем образное полушарие испытывает скачок роста дендритов в 4—7 лет, логическое полушарие — в 9—12 лет. Чем более активно используются оба полушария и все доли мозга, тем больше дендритных связей формируется в мозолистом теле и миелинизируется. Полностью сформированное мозолистое тело передает 4 млрд сигналов в секунду через 200 млн нервных волокон, большей частью мие-линизированных и соединяющих два полушария. Интеграция и быстрый доступ информации стимулируют развитие операционного мышления и формальной логики. У девочек и женщин в мозолистом теле нервных волокон больше, чем у мальчиков и мужчин, что обеспечивает у них более высокие компенсаторные механизмы.
Миелинизация в разных зонах коры также протекает неравномерно: в первичных полях заканчивается в первом полугодии жизни, во вторичных и третичных полях продолжается до 10—12 лет. Классические исследования Флексинга показали, что миелинизация двигательных и чувствительных корешков зрительного тракта завершается в первый год после рождения, ретикулярной формации — в 18 лет, ассоциативных путей — в 25 лет. Это значит, что в первую очередь формируются те нервные пути, которые играют наиболее важную роль на ранних этапах онтогенеза. Процесс миелинизации тесно коррелирует с ростом когнитивных и двигательных способностей в дошкольные годы.
До 7-летнего возраста пластичность мозговых систем из-за отсутствия жестких мозговых связей имеет огромный аутокоррекционный потенциал. К 9-летнему возрасту по всем нейробиологическим законам мозг завершает свое интенсивное развитие. Его функциональные связи становятся все более жесткими и малоподвижными. Развитие операционального обеспечения психической деятельности в 9-летнем возрасте становится экстенсивным. В этом возрасте завершается формирование электрофизиологических механизмов произвольного внимания. Все энергетические ресурсы мозга обращаются к передним отделам левого полушария. Имеет место нарастающее истощение внутренних компенсаторных функциональных возможностей ребенка. Коррекционный процесс подчас приобретает характер муштры.
К моменту прихода ребенка в школу (в 7 лет) у него развито правое полушарие, а левое актуализируется только к 9 годам. В связи с этим обучение младших школьников должно проходить естественным для них правополушарным способом — через творчество, образы, положительные эмоции, движение, пространство, ритм, сенсорные ощущения. К сожалению, в школе принято сидеть смирно, не двигаться, буквы и числа учить линейно, читать и писать на плоскости, т.е. левополушарным способом. Именно поэтому обучение очень скоро превращается в натаскивание и дрессировку ребенка, что неизбежно приводит к снижению мотивации, стрессам и неврозам.
В 7 лет у ребенка хорошо развита только «внешняя» речь, поэтому он мыслит в буквальном смысле вслух. Читать и мыслить ему необходимо вслух до тех пор, пока не будет развита «внутренняя» речь. Перевод мыслей в письменную речь — это еще более сложный процесс, когда задействуют-ся многие зоны неокортекса: чувствительная, основная слуховая, центр слуховых ассоциаций, основная зрительная, моторная зона речи и познавательный центр. Интегрированные схемы мышления передаются в область вокализации и базальный ганглий лимбической системы, что делает возможным построение слов в устной и письменной речи.
Названные процессы являются необходимой предпосылкой для обеспечения стабильных межфакторных и межфункциональных взаимоотношений между различными операциональными и регуляторными уровнями целостной психической деятельности. Срок перехода от одного этапа к следующему строго ограничен объективными нейробиологическими законами, что необходимо учитывать, требуя от ребенка выполнения той или иной задачи. Если задача, предлагаемая ребенку, входит в противоречие или опережает актуальную для его мозга ситуацию, происходит энергетическое обкрадывание. Это негативно сказывается на формировании тех процессов, которые в данный момент времени активно развиваются. Например, при раннем обучении ребенка (до 5-летнего возраста) цифрам и буквам может произойти искажение нормального онтогенеза. Реакция на раннее обучение может быть отсроченной и в дальнейшем проявится в различного рода эмоционально-личностных девиациях, склонности ребенка к частым заболеваниям, аллергических явлениях, логоневрозе (заикание), дизартрии (нарушение речи), тиках и навязчивых движениях. Опережающая нагрузка на кортикальные отделы мозга, которая неизбежна при обучении чтению, письму, счету, в силу своей энергоемкости истощает субкортикальные образования, которые, в свою очередь, завершили свое развитие и утратили пластичность и ресурсы для реадаптации (восстановления). Такой ребенок на фоне высоких достижений в области литературы и математики демонстрирует несформированность элементарных навыков (неумение завязывать шнурки, застегивать пуговицы, резать хлеб и др.). Ребенок зачитывает энциклопедию «до дыр», оставаясь при этом беспомощным в быту. Поэтому раннее обучение детей знакам, цифрам, счету и чтению может спровоцировать дизон-тогенетическое развитие!
Дата добавления: 2015-12-16; просмотров: 4642;