Глава 1. Технологический процесс ремонта узлов
В процессе ремонта металлургических агрегатов восстановление их работоспособности и соответствующего уровня надежности может осуществляться несколькими методами:
- заменой или восстановлением непосредственно отказавшей детали;
- заменой узла, в состав которого входит поврежденная деталь;
- заменой всего механизма или крупного блока, включающего несколько узлов, содержащих поврежденные детали.
Первый метод применяется, как правило, для быстроизнашивающихся деталей с облегченным доступом и малым временем для их замены (вкладыши подшипников скольжения, вкладыши универсальных шпинделей, втулки, направляющие, фурмы и т.д.).
Второй метод на металлургических предприятиях получил наибольшее распространение. Он позволяет существенно сократить время и снизить трудоёмкость замен. В этом случае восстановление работоспособности узла переносится в специализированные ремонтные цехи или на ремонтные участки цеха. Таким методом ремонтируются редукторы, ролики рольгангов, палеты агломашин, гидроцилиндры, гидроаппаратура и т.д.
Третий метод используется для наиболее сложных и трудоемких в регулировке механизмов, таких как, засыпные устройства доменных печей, роликовые секции, кристаллизаторы МНЛЗ, барабаны моталок широкополосных станов горячей прокатки и др.
Когда ремонт осуществляется в специализированных ремонтных цехах (на участках), технологический процесс ремонта, в общем случае, включает следующие операции:
- разборка;
- промывка;
- дефектация;
- восстановление или замена дефектных деталей;
- сборка;
- регулировка;
- испытания;
- приработка.
Для реализации последней операции на предприятии должны быть установлены специальные нагрузочные стенды. Осуществление операции приработки позволяет существенно повысить (в 2-10 раз) срок службы узлов трения.
Разборка узла
Разборка узла осуществляется с целью выявления дефектных или изношенных деталей. Однако в процессе разборки приходится разъединять соединения (пары трения), которые находятся в работоспособном состоянии и в которых трущиеся поверхности приработаны.
Наличие в узле нескольких однотипных, унифицированных пар трения может в дальнейшем, при сборке, привести к их комплектованию из однотипных деталей, но принадлежащих к разным парам трения. Это ведёт к нарушению приработки трущихся поверхностей и, следовательно, к сокращению срока службы.
С другой стороны, в узле трения нагруженной может являться одна часть детали (например часть поверхности неподвижного кольца подшипника качения) или часть деталей (например часть роликов подшипников качения на цапфе кольца конвертера).
Тогда необходимо повернуть кольцо подшипника на соответствующий угол, чтобы нагрузить другую часть кольца или другую часть роликов подшипника.
То есть для реализации таких возможностей требуется перед разборкой зафиксировать взаиморасположение деталей пар трения. Фиксация может осуществляться кернением или окраской, или иным другим способом.
Наиболее трудоёмкой операцией при разборке является разборка соединений с натягом. Для разборки таких соединеий применяют:
- винтовые и гидравлические съемники;
- гидравлические прессы;
- гидропрессовый способ (масло под большим давлением подаётся на поверхность контакта и разъединяет контактирующие детали масляной пленкой).
В ряде случаев в соединениях с натягом развивается процесс фреттинг-коррозии, результатом которого является заклинивание. Тогда единственно возможным способом является разрезание охватывающей детали. В этом случае данная деталь восстановлению не подлежит.
После разборки узла детали промываются (керосин, содовый раствор, пар и другие растворители) вручную или в специальных установках, и готовятся к визуальной или инструментальной дефектоскопии.
Дефектация
После промывки детали подвергаются визуальному осмотру и инструментальному контролю с целью выявления дефектов, возникших в процессе эксплуатации узла. Для наиболее ответственных и нагруженных деталей используются спецальные методы дефектоскопии.
Для выявления развившихся трещин применяются:
- магнитная дефектоскопия;
- люминесцентная дефектоскопия;
- ультразвуковая дефектоскопия.
В магнитной дефектоскопии трещины на поверхности деталей фиксируются по характерному разрыву магнитных силовых линий на дефекте. Направление магнитных силовых линий фиксируется железным порошком, мельчайшие частицы которого перемешаны в керосине. Этой смесью покрывается поверхность детали.
Метод люминесцентной дефектоскопии основан на способности ряда жидкостей светиться под воздействием ультрафиолетовых лучей. Одной из таких жидкостей может являться смесь керосина с трансформаторным маслом (люминофор). Для большей эффективности в растворы добавляются специальные люминесцентные краски. Поверхность детали покрывается люминофором, который проникает в имеющиеся дефекты (трещины). Затем с поверхности удаляется люминофор и поверхность покрывается гигроскопичным порошком, который извлекает люминофор из дефекта. По величине светящихся линий и времени начала их свечения судят о размерах дефектов.
Эффективным методом выявления трещин и дефектов внутри деталей является метод ультразвуковой дефектоскопии. Обнаружение дефектов основано на принципе отражения (или задержания) ультразвуковых волн дефектами. Известно, что ультразвуковые волны отражаются на границах раздела сред, в данном случае металл – воздух.
При использовании этого метода необходимо обеспечить плотный контакт излучателя и приёмника с поверхностью исследуемой детали. В качестве среды, улучшающей контакт, применяется минеральное масло. Кривизна излучателя и поверхности исследуемой детали должна быть одной и той же.
Определение величины износа осуществляется микрометрированием с использованием различных измерительных инструментов (микрометр, индикатор, штангенциркуль, штихмасс, зубомер, нутромер, щуп и др.).
Дата добавления: 2015-12-11; просмотров: 12750;