Единицы хранения данных.

 

При хранении данных необходимо решать одновременно две проблемы:

- как сохранить данные в наиболее компактном виде;

- как обеспечить к ним удобный и быстрый доступ.

Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру, однако в этом случае образуется «паразитная нагрузка» в виде адресных данных. Без них нельзя обеспечить доступ к нужным элементам данных, входящих в структуру.

Поскольку адресные данные также имеют размер и также подлежат хранению, хранить данные в виде мелких единиц так же, как байты, неудобно. Их неудобно хранить и в более крупных единицах (килобайтах, мегабайтах и т.д.), поскольку неполное заполнение одной единицы хранения приводит к неэффективности хранения.

Исходя из этих соображений, в качестве единицы хранения данных принят объект переменной длины, называемый файлом.

Файл – это последовательность произвольного количества байтов, обладающая уникальным собственным именем.

Обычно в одном файле хранят данные, относящиеся к одному типу. В этом случае вид данных определяет тип файла. Поскольку в определении файла нет ограничений на его размер, то, следовательно, можно представить себе файл, имеющий 0 байтов (пустой файл), и файл, имеющий любое количество байтов.

В определении файла особое внимание уделяется имени. Оно фактически несет в себе адресные данные, без которых данные, хранящиеся в файле, не станут информацией.

Кроме функций связанных с адресацией имя файла может хранить и сведения о типе данных заключенных в нем. Для автоматических средств работы с данными это очень важно, так как по имени файла они могут определять адекватный метод извлечения информации из файла. Имя файла состоит из двух частей: собственного имени и расширения.

Собственное имя файла в операционной системе WINDOOWS может содержать от 1 до 255 символов, расширение (если оно имеется) – от 1 до 3 символов.

Примеры собственных имен файлов.

 

Задача 1.1. Лабор. 1.1.

Задача 1.2. Лабор. 1.2.

 

Расширение, как правило, уточняет происхождение, назначение и принадлежность файла к какой-либо группе. Наиболее распространенными расширениями являются:

- EXE, COM – программные файлы - TXT, DOC – текстовые файлы

- TXT – текстовый файл - DAT – файл данных

- BAT – командный файл - ARJ, ZIP, RAR – архивные файлы

- BAK – страховая копия файла - BMP, JPG, GIF – графические файлы

- OBY – объектный модуль - XLS - табличный файл EXCEL.

Требование уникальности имени файла очевидно – без этого невозможно обеспечить однозначность доступа к данным. В современных компьютерных системах требование уникальности имени обеспечивается автоматически - создать файл с именем, тождественным с уже имеющимся, невозможно.

Хранение файлов организуется в иерархической структуре, которая называется файловой структурой. В качестве вершины структуры служит имя носителя, на котором хранятся файлы (например, магнитный диск С). Далее файлы группируются в папки (каталоги). Путь доступа к файлу начинается с имени носителя (диска) и включает все папки (каталоги), через которые он проходит. В качестве разделителя используется символ «\» (обратная косая черта). Например,

 

С\users\informatica\Иванов\задача 1.1.

 

Уникальность имени файла обеспечивается тем, что полным именем файла считается собственное имя файла вместе с путем доступа к нему. Отсюда следует, что на одном носителе не может быть двух файлов с одинаковыми полными именами. Например,

 

С\users\informatica\Петров\задача 1.1.

С\users\informatica\Сидоров\задача 1.1.

 

Здесь в обоих случаях собственные имена файлов одинаково (задача 1.1), но полные имена файлов различные.

О том, как на практике реализуются файловые структуры, рассмотрим в дальнейшем, когда познакомимся с понятием файловой системы.

 

 


Кодирование данных

 

Для автоматизации работы с данными очень важно унифицировать их формы представления. Для этого используются различные приемы кодирования.

Данные считаются закодированными, если они представлены в виде набора цифр, которые называются кодами. Любая компьютерная система обрабатывает данные в закодированном виде, причем для построения кодов используется двоичная система счисления.

Рассмотрим методы кодирования цифровых, текстовых, графических и звуковых данных.

Кодирование цифровых данных заключается в представлении исходных десятичных цифр в виде двоично-десятичных кодов согласно следующей таблице 1.6.1. Таблица 1.6.1

Двоичные коды десятичных чисел

 

Десятичные цифры Двоичный код Десятичные цифры Двоичный код

 

Таким образом, десятичное число 375,125(10) в двоично-десятичном коде будет выглядеть следующим образом: 001101110101.000100100101.

В дальнейшем эти двоично-десятичные коды по специальной программе переводятся в двоичную систему счисления.

Для кодирования символьных данных существуют две международные системы:

- Восьмиразрядная система ASCII (AMERICAN STANDARD CODE FOR INFORMATIONAL INTERCHANGE – американский стандартный код информационного обмена).

- Шестнадцати разрядная система кодирования UNICODE

Восьмиразрядная система ASCII осуществляет кодирование в пределах одного байта и позволяет получить 256 кодовых комбинаций (28=256).

Существует специальная кодовая таблица для кодирования символьных данных, которая имеет 16 строк и 16 столбцов (таблица 1.6.2).

Таблица 1.6.2

Кодовая таблица символов

 

  А В С D Е F
        Управляющие коды            
                   
                               
        Буквы английского алфавита десятичные цифры, знаки арифметических и логических операций            
  А                
                   
                   
                               
                                 
                               
                               
А         Буквы национальных алфавитов (в частности русского) и символы псевдографики            
В                    
С А                  
D                    
Е                                
F                                
  А В С D Е F

 

Примеры:

А- английская – 41(16) = 01000001(2)

А- русская - C0(16) = 11000000(2)

Шестнадцати разрядная система кодирования UNICODE осуществляет кодирование в пределах двух байтов и позволяет иметь 65536 кодовых комбинаций. (216 = 65536)

Несмотря на очевидное преимущество этой системы внедрение ее сдерживалось из-за недостаточных ресурсов памяти персональных компьютеров, так как в системе UNICODE все символы занимают объем памяти в два раза больший, чем в системе ASCII. Однако в настоящее время объем оперативной памяти современных персональных компьютеров достигает 256, 512 и даже 1024 МБ (1 ГБ), и поэтому данная система начинает постепенно внедряться в практику.

Графические данные, хранящиеся в аналоговой (непрерывной) форме на бумаге, фото и кинопленке могут быть преобразованы в цифровой компьютерный формат путем пространственной дискретизации. Это реализуется путем сканирования (сканером), результатом которого является растровое изображение (растр). Растровое изображение состоит из отдельных точек – пикселов (от английского словосочетания picture element – элемент изображения).

Для кодирования цветных изображений применяется принцип декомпозиции произвольного цвета на три основных составляющих: красного – R (RED), зеленого – G (GREEN) и синего B (BLUE). На практике считается, что любой цвет, видимый человеческим глазом, можно получить путем механического смешения этих трех основных цветов. Если для кодирования яркости каждого из этих основных цветовых составляющих использовать также 8-разрядный двоичный код, то можно закодировать по 256 градаций их яркости (28 = 256). Очевидно, что для кодирования цвета одного пиксела необходимо 24 двоичных разряда (три байта). Такая система кодирования называется системой RGB – по первым буквам названий основных цветов (RED – красный, GREEN – зеленый, BLUE – синий). Такая система обеспечивает однозначное кодирование примерно 16,5 миллиона различных цветовых оттенков (224 » 16,5 миллиона), что близко к чувствительности человеческого глаза. Система кодирования RGB называется еще полноцветной (TRUE COLOR).

 









Дата добавления: 2015-12-10; просмотров: 1557;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.