Виды и характеристики ветроэенергетических установок
Исторически первым стационарным агрегатом, использующим энергию ветра, была ветряная мельница, которая вручную ориентировалась на ветер. Основным ее рабочим органом являлось многолопастное колесо с горизонтальной осью вращения, устанавливаемое по направлению ветра. Такие ветродвигатели широко применялись в средние века и в последующем для размола зерна, подъема и перекачки воды, а также для привода некоторых производств. Крупные ветряные мельницы заводского изготовления при высоких скоростях ветра могли развивать мощность до 60 кВт. В XIX веке число ветряных мельниц на территории России превышало 200 тысяч, их суммарная мощность составляла примерно 1,3 млн. кВт, а в 1930 г. в СССР их насчитывалось более 800 тыс. штук.
В настоящее время известно много различных типов ветроэнергетических установок (ВЭУ). Широкое распространение имеют ветроустановки с крыльчатыми ветроколесами и горизонтальной осью вращения (рис. 2.8.). Среди них наибольшее развитие получили двух- и трехлопастные ветроколеса. Вращающий момент ветроколеса создается подъемной силой, образующейся при обтекании профиля лопастей воздушным потоком. В результате кинетическая энергия воздушного потока в пределах площади, ометаемой лопастями, преобразуется в механическую энергию вращения ветроколеса.
|
Рис. 2.8. Ветроколеса крыльчатых ветроустановок
1 – многолопастное, 2 – трехлопастное, 3 – двухлопастное, 4 – однолопастное с противовесом
Мощность, развиваемая на оси ветроколеса, пропорциональна квадрату его диаметра и кубу скорости ветра. По классической теории Н.Е. Жуковского для идеального ветроколеса коэффициент использования энергии ветра ξ = 0,593. То есть идеальное ветроколесо (с бесконечным числом лопастей) может извлечь 59,3% энергии, проходящей через его поперечное сечение. Реально на практике у лучших быстроходных колес максимальное значение коэффициента использования энергии ветра доходит до 0,45 – 0,48, а у тихоходных – до 0,36 – 0,38.
Важной характеристикой ветроколеса является его быстроходность Ζ , представляющая отношение скорости движения конца лопасти к скорости ветрового потока. Конец лопасти обычно движется в плоскости ветроколеса со скоростью, которая в несколько раз выше скорости ветра. Оптимальные значения быстроходности двухлопастного колеса – 5-7, трехлопастного - 4-5, шестилопастного - 2,5 - 3,5.
Из конструктивных характеристик на мощность ветроколеса основное влияние оказывают его диаметр, а также форма и профиль лопастей. Мощность мало зависит от числа лопастей. Частота вращения ветроколеса пропорциональна быстроходности и скорости ветра и обратно пропорциональна диаметру. На величину мощности влияет также высота расположения центра колеса, так как скорость ветра зависит от высоты.
Мощность ВЭУ, как отмечалось, пропорциональна скорости ветра в третьей степени. При расчетной скорости ветра и выше обеспечивается работа ВЭУ с номинальной мощностью. При скоростях ветра ниже расчетной мощность ветроустановки может составлять 20 – 30% от номинальной и менее. При таких режимах работы происходят большие потери энергии в генераторах вследствие их низких к.п.д. на малых нагрузках, а в асинхронных генераторах возникают, кроме того, большие реактивные токи, которые необходимо компенсировать. Для исключения этого недостатка в некоторых ВЭУ применяют 2 генератора с номинальными мощностями 100 и 20 – 30% от номинальной мощности ВЭУ. При слабых ветрах первый генератор отключается. В некоторых ВЭУ малый генератор обеспечивает также возможность работы установки при малых скоростях ветра при пониженных оборотах с высоким значением коэффициента использования энергии ветра.
Установка ветроколеса на ветер, т.е. перпендикулярно к направлению ветра, производится в агрегатах очень малой мощности с помощью хвоста (хвостового оперения), в агрегатах небольшой и средней мощности – посредством механизма виндроз, а в современных крупных установках – специальной системой ориентирования, получающей управляющий импульс от датчика направления ветра (флюгера), установленного наверху на гондоле ветроустановки. Механизм виндроз представляет собой одно или два небольших ветроколеса, плоскость вращения которых перпендикулярна к плоскости вращения основного колеса, работающих на привод червяка, поворачивающего платформу головки ветродвигателя до тех пор, пока виндрозы не будут лежать в плоскости, параллельной направлению ветра.
Крыльчатое ветроколесо с горизонтальной осью вращения может располагаться перед башней и за ней. В последнем случае лопасть подвергается постоянному многократному воздействию переменных сил при прохождении в тени башни, что одновременно значительно повышает уровень шума. Для регулирования мощности и ограничения частоты вращения ветроколеса применяется ряд способов, в том числе поворот лопастей или их части вокруг своей продольной оси, а также закрылки, клапаны на лопастях и другие способы.
Основными преимуществами ветроустановок с горизонтальной осью вращения ветроколеса является то, что условия обтекания лопастей воздушным потоком постоянны, не изменяются при повороте ветроколеса, а определяются только скоростью ветра. Благодаря этому, а также достаточно высокому значению коэффициента использования энергии ветра, ВЭУ крыльчатого типа в настоящее время получили наибольшее распространение.
Другой разновидностью ветроколеса является ротор Савониуса (рис. 2.9.). Вращающий момент возникает при обтекании ротора потоком воздуха за счет разного сопротивления выпуклой и вогнутой частей ротора. Колесо отличается простотой, но имеет очень низкий коэффициент использования энергии ветра – всего 0,1 – 0,15.
|
Рис. 2.9. Ротор Савониуса
а) – двухлопастный, б) - четырехлопастный
В последние годы в ряде зарубежных стран, особенно в Канаде, начали заниматься разработкой ветродвигателя с ротором Дарье, предложенным во Франции в 1920 г. Этот ротор имеет вертикальную ось вращения и состоит из двух – четырех изогнутых лопастей (рис. 2.10.). Лопасти образуют пространственную конструкцию, которая вращается под действием подъемных сил, возникающих на лопастях от ветрового потока. В роторе Дарье коэффициент использования энергии ветра достигает значений 0,30 – 0,35. В последнее время проводятся разработки роторного двигателя Дарье с прямыми лопастями (рис. 2.10. б, в). Главным преимуществом ветроустановок Дарье является то, что они не нуждаются в механизме ориентации на ветер. У них генератор и другие механизмы размещаются на незначительной высоте возле основания. Все это существенно упрощает конструкцию. Однако серьезным органическим недостатком этих ветродвигателей является значительное изменение условий обтекания крыла потоком за один оборот
|
Рис. 2.10. Ветроэнергетические установки (Дарье) с вертикальным ротором
а – Ф-образный, б - D - образный, в – с прямыми лопастями.
1 – башня (вал), 2 – ротор, 3 – растяжки, 4 – опора, 5 – передача вращающего момента ротора, циклично повторяющееся при работе.
Это может вызывать усталостные явления и приводить к разрушению элементов ротора и серьезным авариям, что должно учитываться при конструировании ротора (особенно при больших мощностях ВЭУ). Кроме того, для начала работы их требуется раскрутить.
Зависимости коэффициента использования энергии ветра x, от быстроходности Ζ для различных типов ветроколес приведены на рис. 2.11. Видно, что наибольшее значение ξ имеют двух- и трехлопастные колеса с горизонтальной осью вращения. Для них высокое ξ сохраняется в широком диапазоне быстроходности Ζ. Последнее существенно, так как ветроустановкам приходится работать при скоростях ветра, изменяющихся в больших пределах. Именно поэтому установки этого типа получили в последние годы наибольшее распространение.
|
Рис. 2.11. Типовые зависимости коэффициента использования энергии ветра от быстроходности ветроколеса Ζ
1 – идеальное крыльчатое ветроколесо; 2,3 и 4 – двух, - трех и многолопастные крыльчатые ветроколеса; 5 – ротор Дарье; 6 – ротор Савониуса; 7 – четырехлопастное ветроколесо датской мельницы.
Дата добавления: 2015-12-08; просмотров: 1863;
