Устройство фотоэлемента
Фотоэлемент на основе полупроводников состоит из алюминиевой подложки, двух слоев полупроводников с разной проводимостью, защитного антибликового стекла и отрицательных электродов (рисунок 2 ). К слоям с разных сторон подпаиваются контакты, которые используются для подключения к внешней цепи. Роль катода играет слой с n-проводимостью (электронная проводимость), роль анода — p-слой (дырочная проводимость).
Принцип действия фотоэлемента
Контакт p-или n-полупроводников приводит к образованию между ними контактного электрического поля, играющего важную роль в работе солнечного фотоэлемента.
Рассмотрим причину возникновения контактной разности потенциалов. При соединении в одном монокристалле полупроводников p- и n-типа возникает диффузионный поток электронов из полупроводника n-типа в полупроводник p-типа и, наоборот, поток дырок из p- в n-полупроводник. В результате такого процесса прилегающая к p-n переходу часть полупроводника p-типа будет заряжаться отрицательно, а прилегающая к p-n переходу часть полупроводника n-типа, наоборот, приобретет положительный заряд.
Таким образом, вблизи p-n перехода образуется двойной заряженный слой, который противодействует процессу диффузии электронов и дырок. Действительно, диффузия стремится создать поток электронов из n-области в p-область, а поле заряженного слоя, наоборот, – вернуть электроны в n-область.
Аналогичным образом поле в p-n переходе противодействует диффузии дырок из p- в n-область. В результате устанавливается равновесное состояние: в области p-n перехода
Рисунок 2 - Строение фотоэлемента
возникает потенциальный барьер, для преодоления которого электроны из n-полупроводника и дырки из p-полупроводника должны затратить определенную энергию.
Рассмотрим работу p-n перехода в фотоэлементах. При поглощении света в полупроводнике возбуждаются электронно-дырочные пары. В однородном полупроводнике фотовозбуждение увеличивает только энергию электронов и дырок, не разделяя их в пространстве, то есть электроны и дырки разделяются «пространстве энергий», но остаются рядом в геометрическом пространстве.
Для разделения носителей тока и появления фотоэлектродвижущей силы (фотоЭДС) должна существовать дополнительная сила. Наиболее эффективное разделение неравновесных носителей имеет место именно в области p-n перехода. Генерированные вблизи p-n перехода «неосновные» носители (дырки в n-полупроводнике и электроны в p-полупроводнике) диффундируют к p-n переходу, подхватываются полем p-n перехода и выбрасываются в полупроводник, в котором они становятся основными носителями: электроны будут локализоваться в полупроводнике n-типа, а дырки – в полупроводнике p-типа.
В результате полупроводник p-типа получает избыточный положительный заряд, а полупроводник n-типа – отрицательный. Между n- и p-областями фотоэлемента возникает разность потенциалов – фотоЭДС, или напряжение в режиме холостого хода. Полярность фотоЭДС соответствует «прямому» смещению p-n перехода, которое понижает высоту потенциального барьера и способствует инжекции дырок из p-области в n-область и электронов из n-области в p-область. В результате действия этих двух противоположных механизмов – накопления носителей тока под действием света и их оттока из-за понижения высоты потенциального барьера – при разной интенсивности света устанавливается разная величина фотоЭДС. При этом величина фотоЭДС в широком диапазоне освещенностей растет пропорционально логарифму интенсивности свет, достигая насыщения при больших освещённостях.
При коротком замыкании освещенного p-n перехода в электрической цепи потечет ток, пропорциональный по величине интенсивности освещения и количеству генерированных светом электронно-дырочных пар. При включении в электрическую цепь полезной нагрузки, величина тока в цепи несколько уменьшится. Обычно электрическое сопротивление полезной нагрузки в цепи солнечного элемента выбирают таким, чтобы получить максимальную отдаваемую этой нагрузке электрическую мощность.
Дата добавления: 2015-12-08; просмотров: 8681;