Лекция 1. Электростатика. Электрический заряд. Электростатическое поле. Напряженность электрического поля.

Часть 2. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ. ВОЛНОВАЯ ОПТИКА

АТПП, ИДМ, БТМАС, СС, Химия, ВМКСС –второй семестр

 

ОГР, ТМО, МОП, СТМ, ООС, ПОТ –третий семестр

 


Лекция 1. Электростатика. Электрический заряд. Электростатическое поле. Напряженность электрического поля.

§ 1 – 1 Электрический заряд.

Электричество как особый вид материи изучалось еще древними греками, но коли-чественная мера его - электрический заряд – была введена лишь после опытов Кулона. Ос-

новным свойством заряда является его дискретность. Наименьший заряд, известный в настоящее время, равен 1,6·10 –19 Кулона (единица измерения – Кулон - будет определена позднее). Предполагается, что возможны дробные части этого заряда – кварки, но они до настоящего времени экспериментально не обнаружены. Однако, установлено, что сум-марная величина электрического заряда в доступной нашим наблюдениями части Вселен-ной остается постоянной. Это положение носит название закона сохранения заряда.

Существуют два различных типа электрических зарядов, один из которых по пред-ложению Б.Франклина был назван положительным, а другой – отрицательным. Субъек-тивный характер выбора такого названия привел к тому, что заряд электрона – наиболее известной элементарной частицы – оказался отрицательным. Это, в свою очередь, привело к некоторой путанице в определении направления электрического тока, но на первой стадии изучения электричества нас будут интересовать неподвижные заряды, обычно называемые статическими.

§ 1 – 2 Закон Кулона.

Еще из школьного курса физики известно, что электрические заряды взаимодейст-вуют друг с другом. Величина силы взаимодействия измерена Кулоном, и закон, харак-теризующий силу взаимодействия двух статических точечных зарядов Q и q, носит его имя. Если учесть, что сила – это вектор, то этот закон может быть записан в таком виде:

где r /r – единичный вектор, направленный вдоль прямой, соединяющей оба заряда, расстояние между которыми равно r.

Коэффициент k вводится в связи с использованием определенной системы единиц. В принятой у нас системе СИ этот коэффициент выражается через так называемую диэлек-трическую постоянную вакуума ε0 = 8,86 · 10 –12 Ф/М ( k = 1/ 4π ε0). Причиной появления этого коэффициента является выбор единицы измерения заряда – в системе СИ заряд измеряется в Кулонах, являющихся производными единицами ( основной единицей служит Ампер – единица измерения силы тока).

Замечание: понятие точечного заряда является математической абстракцией, в действи-тельности приходится иметь дело с зарядами, заполняющими либо некоторый объем, либо некоторую площадь, а иногда – в случае тонких длинных проводов – некоторую длину. Как правило, заряды распределяются неравномерно, поэтому можно рассматривать объемную, поверхностную или линейную плотности зарядов, определяемые как:

; ;

где dV,dS и dl – бесконечно малые элементы объема, площади и длины соответственно.Ве-личина бесконечно малого заряда, который можно рассматривать как точечный, при этом определяется как dq1= ρdV,dq2 = σdS, dq3 = τdl.

§ 1 – 3 Напряженность электрического поля.

В предыдущем разделе (механике) отмечалось, что любое взаимодействие тел, нахо-

дящихся на некотором расстоянии друг от друга, осуществляется посредством поля. При-менительно к электрическим зарядам это означает, что вокруг любого заряда существует особый вид материи – электрическое поле. Это поле не воспринимается непосредственно чувствами человека. Для обнаружения поля используются другие заряды, называемые пробными. Однако, из закона Кулона следует, что величина силы воздействия на пробный заряд зависит от величины этого заряда. Для характеристики самого поля вводится вели-чина силы, действующей на пробный заряд, отнесенная к величине этого пробного заряда. Эта величина называется напряженностью электрического поля. Другими словами можно сказать, что напряженность электрического поля есть сила, действующая на единич-ный положительный заряд, помещенный в данную точку поля.Если обозначить заряд, поле которого мы изучаем – Q, то напряженность поля в любой точке пространства вокруг этого заряда, находящейся на расстоянии r от него, равна:

E=(1/4pe) (Qr) /r3 ; E = (1/4pe)(Q/r2).

Напряженность поля от нескольких зарядов находится по принципу суперпозиции: напря-женность поля от суммы зарядов равна сумме всех напряженностей от каждого заряда в от-дельности, т.е. E (Σ Qi) = Σ (Ei).

Этот принцип позволяет находить напряженность поля от любых зарядов, распреде-ленных в пространстве, причем, вместо суммы используются интегралы. Однако вычисле-ние осложняются тем, что напряженность поля – вектор. Поэтому часто приходится сначала вычислять отдельные составляющие вектора Е, а общую величину находить их суммированием. Для прямоугольной системы координат это делается сравнительно просто:

E2 = Ex2 + Ey2 +Ez2.

Простой пример: найти напряженность электрического поля, которую создает бесконечная нить, равномерно заряженная по длине с линейной плотностью τ. Для решения этой задачи необходимо найти поле от бесконечно малого (точечного) заряда dq и затем произвести суммирование по всей длине нити. Поле от заряда dq на расстоянии r от него (см.рис.1) рав-

Рис.1 Вычисление поля от бесконеч-ной нити. но dE = (1/4pe)(dq/r2), dE = dEx + dEy;   dEx = dEcosα ; dEy = dEsinα ;   Ex = ò dEx , Ey = òdEy. Для суммирования (интегрирования в нашем случае) удобно ввести одну переменную, а ос-тальные связать с ней при помощи геометри-ческих соотношений. За такую переменную можно взять угол a. Тогда r = x/cosa, y/x0 = tga.

Из последнего соотношения следует (dy/x0) = da/cos2a.

Ex = =

 

Ey = . Ответ : Е = .

Из приведенного примера следует, что принцип суперпозиции позволяет вычислить напряженность поля от любой конфигурации зарядов, представив ее как некую сумму бес-конечно малых (точечных) зарядов. Дело лишь в том, как проводить суммирование (интег-рирование). Для рассмотренного одномерного случая это простой интеграл. Для распре-деления зарядов по поверхности это будет двумерный (поверхностный) интеграл, для объемного распределения – трехмерный (объемный) интеграл. Для наглядного представ-ления электрическое поле принято изображать в виде линий, названных силовыми. Под си-ловыми линиями понимаются линии, касательные к которым в данной точке совпадают с направлением вектора напряженности в этой точке. Кроме того, было условлено, что гус-тота силовых линий должна быть пропорциональна величине напряженности. Силовые линии начинаются на положительных и кончаются на отрицательных зарядах. Картина силовых линий от двух точечных зарядов изображена на рис.2. Как видно из рисунка, в промежутке между зарядами силовые линии являются непрерывными.

Рис.2 Линии напряженности. Это означает, что направление векторов напряженности во всех точках однозначно, т.к. линии нигде не пересекаются. Для количественного описания силовых линий вводится понятие потока. Потоком вектора напряженности через за-данную поверхность называется скаляр-ное произведение вектора напряженности на величину этой поверхности: Ф = (ЕS). При этом предполагается, что поверхность -

– это вектор, причем направление этого вектора определяется направлением внешней нормали n к поверхности, т.е. нормали, проведенной в сторону выпуклости поверхности (см. рис.3): dФ = (E dS) = EdS cosa = En dS. Для плоской поверхности направление внешней нормали должно задаваться дополнительными условиями.

 








Дата добавления: 2015-11-06; просмотров: 1106;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.