Вспомогательные металлы.
Основу всех сталей составляет железо, они также содержат хром, никель и небольшое количество углерода. Для улучшения литейных, прочностных и других свойств, сталей к ним делают добавки. Сталь для зубных протезов содержит 1% титана.
Железо - металл, широко распространенный в природе. Железные руды содержат химические соединения его с кислородом. Важнейшими железными рудами являются магнитный железняк (магнетит) FeaO4, красный железняк (гематит) Fе2O3, бурый железняк Fe2O3-SH2O, шпатовый железняк (сидерит), содержащий железо в карбонате РеСОз. Железо получают также из руд, содержащих хром (хромиты), хромоникелевых руд, титаномагнетитових и др.
Чистое железо имеет синевато-серебристый цвет, в химическом отношении не устойчиво. Во влажной среде оно подвергается коррозии. Растворы солей и кислот растворяют железо.
Железо очень пластичный металл, однако получить его в чистом виде и защитить от коррозии очень трудно.
Широкое применение нашли различные сплавы на основе железа, из которых наиболее распространенными являются различные стали. В зубопротезной практике нашли применение малоуглеродистые стали с; содержанием углерода до 0,15%. Большее количество углерода делает сталь более твердой и менее устойчивой к коррозии.
Рецепт стали для изготовления зубных протезов в нашей стране в 30-х годах был предложен Д. Н. Цитри-ным. Применение ее значительно уменьшило использование золота и платины, что было очень важно для развития стоматологической помощи населению страны в широких масштабах.
Нержавеющая сталь, применяемая в ортопедической стоматологии — многокомпонентный сплав. В него входят железо, хром, никель, углерод, титан и ряд других добавок. Главным компонентом, обеспечивающим коррозионную устойчивость сплава, является хром. Его содержится в сплаве 17—19%. Минимальное содержание хрома, обеспечивающее коррозионную стойкость сплава, должно быть не меньше 12—13%.
Для повышения пластичности сплава в него добавляют 8—11% никеля. Присутствие никеля делает сплав ковким, что облегчает обработку давлением. В промышленности виды стали принято обозначать марками. Компоненты, входящие в состав сплава, обозначают буквами: кремний —С, хром—X, никель—Н, титан —T и т. д. Цифрами обозначают процент содержания компонента в сплаве. Первая цифра марки обозначает содержание углерода в десятых долях процента.
Наиболее распространенной в зубопротезной практике-является нержавеющая сталь марки 1Х18Н9Т. Этот сплав состоит из 72% железа, 18% хрома, 9% никеля, 0,1% углерода и до 1% титана. В небольшом количестве всегда присутствуют посторонние примеси, среди которых наиболее . нежелательными являются сера и фосфор. Железо с углеродом в сплавах может находиться в различных сочетаниях: в виде химического соединения — карбида железа Fe3C или в виде твердого расплава, когда атомы углерода располагаются в кристаллической решетке между атомами железа. Углерод в сплаве может находиться в свободном состоянии в виде графита. Различные виды связи железа с углеродом наблюдаются при термической обработке стали, ее кристаллизации из расплава.
Встречаются следующие структурные виды связи железа и углерода:
1. Аустенит — твердый раствор углерода в железе, характеризующийся пластичностью, ковкостью сплава при твердости около 200 кгс/см2 по Бринеллю.
2. Феррит — твердый раствор углерода, очень мягкий и пластичный. Его твердость около 80 кгс/мм2 по Бринеллю.
3. Цементит — карбид железа (Fe3C), очень твердый и хрупкий.
4. Перлит — смесь кристаллов цементита и феррита. Получается из аустенита в результате его распада при температуре 723°С.
5. Ледебурит — смесь перлита и цементита, очень , твердый и хрупкий.
Аустенитная структура нержавеющей стали отвечает всем основным требованиям, предъявляемым к зубопротезным материалам, поэтому при термической и механической обработке стали ее стараются в конечном итоге фиксировать в аустенитной структуре. Хром с углеродом также может давать ряд химических соединений — карбидов хрома: Cr4C, Cr3C2, O5C2. Они образуются при термической обработке сплава в температурном интервале 450—850°С.
Карбиды образуются по границам кристаллических зерен, что приводит к уменьшению количества гнободного хрома в этих зонах, и в связи с этим увеличивается возможность возникновения межкристаллической коррозии.
Чтобы уменьшить возможность образования карбидов хрома, в состав нержавеющей стали вводят титан, активнее вступающий в связь с углеродом и образующий карбиды титана. При этом образование карбидов хрома прекращается, и таким образом типы предотвращает межкристаллическую коррозию стали. Для улучшения жидкотекучести и жаростойкости стали, используемой для литья, в нее вводят 2,5% кремния (сплав ЭИ-95).
Нержавеющая сталь нашла широкое применение при изготовлении зубных протезов. Из нее делают различные виды несъемных зубных протезов, металлические части съемных протезов (кламмеры, дуги и т. п.). Нержавеющая сталь аустенитной структуры благодаря пластичности и ковкости хорошо обрабатывается методом давления. Для изготовления штампованных коронок промышленность выпускает стандартные гильзы. Их получают из листа стали марки 1Х18Н9Т толщиной 0,25—0,3 мм методом холодной штамповки. Следует иметь в виду, что стандартные гильзы из нержавеющей стали имеют разную толщину. Наиболее истонченной частью оказывается область перехода боковых стенок ко дну. Вследствие возникающего при штамповке наклепа структура стали в гильзах оказывается деформированной. Показателем этого является повышенная твердость боковых частей гильзы. Если микротвердость (по Виккерсу) в середине дна составляет 130—150 кгс/мм2, то у боковых стенок она достигает 290 кгс/мм2. Для придания гильзам хорошей ковкости в зуботехнических лабораториях их подвергают отжигу при температуре 1000—1050°С. В настоящее время Ленинградский завод «Медполимер» выпускает 22 размера гильз диаметром 6—16 мм через каждые 0,5 и 18 мм. Из этой же стали выпускают проволоку диаметром 0,6; 0,8; 1,0; 1,2; 1,5 и 2,0 мм для изготовления различных ортодонтических аппаратов, кламмеров, штифтов. Кроме этого, выпускают 2 вида стандартных кламмеров диаметром 1,0 и 1,2 мм. Сталь марок ЭИ-95 и ЭЯ1Т имеет хорошие литейные свойства и применяется для отливки различных деталей зубных протезов. Недостатком ее является относительно большая усадка приглитья (до З%), низкий предел прочности (около 30 кгс/мм2), показывающий величину нагрузки, необходимую, чтобы вызвать остаточную деформацию материала.
Эту сталь используют и для промышленного изготовления стандартных защиток для фасеток и зубов, которые комплектуют гарнитурами (передние и боковые зубы). Стандартные зубы применяют крайне редко, главным образом в районах, где нет условий для организации индивидуального литья.
Для изготовления сплавов применяют различные металлы. Самое большое значение среди всех сплавов имеют, стали различных составов. Простые конструкционные стали, состоят из железа относительно высокой чистоты с небольшими (0,07—0,5%) добавками углерода. Так, чугун, получаемый в доменной печи, содержит около 10% других металлов, из них примерно 3% составляет углерод, а остальные — кремний, марганец, сера и фосфор. А легированные стали, получают, добавляя к железу кремний, медь, марганец, никель, хром, вольфрам, ванадий и молибден.
Никель наряду с хромом является важнейшим компонентом многих сплавов. Он придает сталям высокую химическую стойкость и механическую прочность. Так, известная нержавеющая сталь содержит в среднем 18% хрома и 8% никеля. Для производства химической аппаратуры, сопел самолетов, космических ракет и спутников требуются сплавы, которые устойчивы при температурах выше 1000 °С, то есть не разрушаются кислородом и горючими газами и обладают при этом прочностью лучших сталей. Этим условиям удовлетворяют сплавы с высоким содержанием никеля. Большую группу составляют медно-никелевые сплавы.
Сплав меди, известный с древнейших времен, - бронза содержит 4-30% олова (обычно 8-10%). До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Из бронзы отливали в средние века орудия и многие другие изделия. Знаменитые Царь-пушка и Царь-колокол в Московском Кремле также отлиты из сплава меди с оловом. В настоящее время в бронзах олово часто заменяют другими металлами, что приводит к изменению их свойств. Алюминиевые бронзы, которые содержат 5-10% алюминия, обладают повышенной прочностью. Из такой бронзы чеканят медные монеты. Очень прочные, твердые и упругие бериллиевые бронзы содержат примерно 2% бериллия. Пружины, изготовленные из бериллиевой бронзы, практически вечны. Широкое применение в народном хозяйстве нашли бронзы, изготовленные на основе других металлов: свинца, марганца, сурьмы, железа и кремния.
Сплав мельхиор содержит от 18 до 33% никеля (остальное медь). Температура плавления мельхиора составляет 1170 °С. Он имеет красивый внешний вид. Из мельхиора изготавливают посуду и украшения, чеканят монеты («серебро»). Похожий на мельхиор сплав - нейзильбер - содержит, кроме 15% никеля, до 20% цинка. Этот сплав используют для изготовления художественных изделий, медицинского инструмента. Медно-никелевые сплавы константан (40% никеля) и манганин (сплав меди, никеля и марганца) обладают очень высоким электрическим сопротивлением. Их используют в производстве электроизмерительных приборов. Характерная особенность всех медно-никелевых сплавов - их высокая стойкость к процессам коррозии - они почти не подвергаются разрушению даже в морской воде. Сплавы меди с цинком с содержанием цинка до 50% носят название латунь. Латунь "60" содержит, например, 60 весовых частей меди и 40 весовых частей цинка. Для литья цинка под давлением применяют сплав, содержащий около 94% цинка, 4% алюминия и 2% меди. Это дешевые сплавы, обладают хорошими механическими свойствами, легко обрабатываются. Латуни благодаря своим качествам нашли широкое применение в машиностроении, химической промышленности, в производстве бытовых товаров. Для придания латуням особых свойств в них часто добавляют алюминий, никель, кремний, марганец и другие металлы. Из латуней изготавливают трубы для радиаторов автомашин, трубопроводы, патронные гильзы, памятные медали, а также части технологических аппаратов для получения различных веществ.
По следующим рецептам можно получить легкоплавкие сплавы. Сплав Ньютона: 31 массовая часть свинца, 19 частей олова и 50 частей висмута. Температура плавления 95 °С. Сплав Вуда: 25 частей свинца, 12,5 частей олова, 50 частей висмута и 12,5 частей кадмия. Температура плавления 60 °С. Ложка из такого сплава расплавится, если ею помешать горячий кофе. Раньше это демонстрировали в качестве шутливого опыта. Однако перемешанный таким образом напиток ядовит из-за солей свинца и висмута!
Промышленные медно-никелевые сплавы условно можно разделить на две группы: конструкционные (или коррозионностойкие)иэлектротехнические (термоэлектродные сплавы и сплавы сопротивления).
К конструкционным сплавам относятся, куниаль, мельхиор, нейзильбер и др. Мельхиорами называют двойные и более сложные сплавы на основе меди, основным легирующим компонентом которых является никель. Для повышения коррозионной стойкости в морской воде их дополнительно легируют железом и марганцем. Нейзильберы по сравнению с мельхиорами характеризуются высокой прочностью из-за дополнительного легирования цинком. Куниалями называются сплавы тройной системы Cu-Ni-Al. Никель и алюминий при высоких температурах растворяются в меди в больших количествах, но с понижением температуры растворимость резко уменьшается. По этой причине сплавы системы Cu-Ni-Al эффективно упрочняются закалкой и старением. Сплавы под закалку нагревают до 900 -1000 оС, а затем подвергают старению при 500-600 оС. Упрочнение при старении обеспечивают дисперсные выделения фаз Ni3Al и NiAl. Мельхиор, нейзильбер, куниали отличаются высокими механическими и коррозионными свойствами, применяются для изготовления теплообменных аппаратов в морском судостроении (конденсаторные трубы и термостаты), медицинского инструмента, деталей точной механики и химической промышленности, деталей приборов в электротехнике, радиотехнике и для изготовления посуды. Мельхиор марки МН19 и нейзильбер марки МНЦ15-20 используются как резистивные сплавы. Легкоплавкие сплавы в ортопедической стоматологии Легкоплавкие сплавы в изделиях стоматологического назначения занимают важное место, хотя и относятся к вспомогательным материалам. Наибольшее значение имеют легкоплавкие сплавы, служащие материалом для штампов и моделей, применяемых в технологии коронок и некоторых других протезов. Такой материал должен обладать рядом свойств, из которых важнейшими являются:. легкоплавкость, облегчающая отливку индивидуальных штампов и моделей, отделение штампов от изделий; относительная твердость, обеспечивающая устойчивость штампа в процессе штамповки; минимальная усадка при охлаждении, гарантирующая точность штампованных изделий. Основными компонентами, применяемыми для составления подобных сплавов, являются висмут, свинец, олово и кадмий. Наименьшей усадкой и наибольшей твердостью обладают легкоплавкие сплав, содержащие около 50% висмута. Температура плавления наиболее распространенных рецептур ограни-чена в пределах 63—115° С. Все эти сплавы имеют серый цвет. Они пред-ставляют собой механические смеси и выпускаются в виде блоков по 60 грамм (списывается60 грамм, одна таблетка на 100 зафиксированных в полости рта коронок). Состав наиболее распространенных сплавов приведен в следующей таблице.
Составы легкоплавких сплавов.Номер сплава | Содержание металлов в сплаве в единицах по массе | Температура плавления |
Олово свинец висмут кадмий | ||
1 | 5 3 8 - | 63 |
2 | 1 1 2 - | 93 |
3 | 20 19 48 13 | 65 |
4 | 4 4 7 1 | 60 |
5 | 2 3 5 2 | 47 |
6 | 2 4 7 - | 70 |
7 | 3 8 8 - | 95 |
Дата добавления: 2015-09-07; просмотров: 2810;