Тангенциальная составляющая ускорения 6 страница

(31.1)

где коэффициент пропорциональности m, зависящий от природы жидкости, называется динамической вязкостью (или просто вязкостью).

Единица вязкости — паскаль-секунда (Па×с): 1 Па×с равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения 1 Н на 1 м2 поверхности касания слоев (1 Па×с= 1 Н×с/м2).

Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей h с увеличе­нием температуры уменьшается, у газов, наоборот, увеличивается), что указывает на различие в них механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18—40°С падает в четыре раза. Российский физик П. Л. Капица (1894—1984; Нобелевская пре­мия 1978 г.) открыл, что при температуре 2,17 К жидкий гелий переходит в сверх­текучее состояние, в котором его вязкость равна нулю.

Существует два режима течения жидкостей. Течение называется ламинарным (слоис­тым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скоро­сти последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы.

При турбулентном течении частицы жидкости приобретают составляющие скоро­стей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверх­ности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличают­ся. Из-за большого градиента скоростей у поверхности трубы обычно происходит образование вихрей.

Профиль усредненной скорости при турбулентном течении в трубах (рис. 53) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения. Характер течения зависит от безразмерной величины, называемойчислом Рейнольдса (О. Рейнольдс (1842—1912) — английский ученый):

где n = h/p—кинематическая вязкость; р—плотность жидкости; <v>—средняя по сечению трубы скорость жидкости; d — характерный линейный размер, например диаметр трубы.

При малых значениях числа Рейнольдса наблюдается ламинарное тече­ние, переход от ламинарного течения к турбулентному происходит в области а при (для гладких труб) течение—турбулентное. Если число Рейнольдса одинаково, то режим течения различных жидкостей (газов) в трубах разных сечений одинаков.

§ 32. Методы определения вязкости

1. Метод Стокса.* Этот метод определения вязкости основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.

* Дж. Стокс (1819—1903) — английский физик и математик.

 

На шарик, падающий в жидкости вертикально вниз, действуют три силы: сила тяжести Р=4/3pr3rg (r — плотность шарика), сила Архимеда Р=4/3pr3r'g (r' — пло­тность жидкости) и сила сопротивления, эмпирически установленная Дж. Стоксом: F=6phrv, где r — радиус шарика, v — его скорость. При равномерном движении шарика

откуда

Измерив скорость равномерного движения шарика, можно определить вязкость жид­кости (газа).

2. Метод Пуазейля.* Этот метод основан на ламинарном течении жидкости в тонком капилляре. Рассмотрим капилляр радиусом R и длиной l. В жидкости мысленно выделим цилиндрический слой радиусом r и толщиной dr (рис. 54). Сила внутреннего трения (см. (31.1)), действующая на боковую поверхность этого слоя,

где dS — боковая поверхность цилиндрического слоя; знак минус означает, что при возрастании радиуса скорость уменьшается.

* Ж. Пуазейль (1799—1868) — французский физиолог и физик.

 

Для установившегося течения жидкости сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается силой давления, действующей на его основание:

После интегрирования, полагая, что у стенок имеет место прилипание жидкости, т. е. скорость на расстоянии R от оси равна нулю, получаем

 

Отсюда видно, что скорости частиц жидкости распределяются по параболическому закону, причем вершина параболы лежит на оси трубы (см. также рис. 53).

За время t из трубы вытечет жидкость, объем которой

откуда вязкость

§ 33. Движение тел в жидкостях и газах

Одной из важнейших задач аэро- и гидродинамики является исследование движения твердых тел в газе и жидкости, в частности изучение тех сил, с которыми среда действует на движущееся тело. Эта проблема приобрела особенно большое значение в связи с бурным развитием авиации и увеличением скорости движения морских судов.

На тело, движущееся в жидкости или газе, действуют две силы (равнодействующую их обозначим R), одна из которых (Rx) направлена в сторону, противоположную движению тела (в сторону потока), —лобовое сопротивление, а вторая (Ry) перпен­дикулярна этому направлению —подъемная сила (рис. 55).

Если тело симметрично и его ось симметрии совпадает с направлением скорости, то на него действует только лобовое сопротивление, подъемная же сила в этом случае равна нулю. Можно доказать, что в идеальной жидкости равномерное движение происходит без лобового сопротивления. Если рассмотреть движение цилиндра в такой жидкости (рис. 56), то картина линий тока симметрична как относительно прямой, проходящей через точки А и В, так и относительно прямой, проходящей через точки С и D, т. с. результирующая сила давления на поверхность цилиндра будет равна нулю.

Иначе обстоит дело при движении тел в вязкой жидкости (особенно при увеличении скорости обтекания). Вследствие вязкости среды в области, прилегающей к поверх­ности тела, образуется пограничный слой частиц, движущихся с меньшими скоростями. В результате тормозящего действия этого слоя возникает вращение частиц и движение жидкости в пограничном слое становится вихревым. Если тело не имеет обтекаемой формы (нет плавно утончающейся хвостовой части), то пограничный слой жидкости отрывается от поверхности тела. За телом возникает течение жидкости (газа), направ­ленное противоположно набегающему потоку. Оторвавшийся пограничный слой, сле­дуя за этим течением, образует вихри, вращающиеся в противоположные стороны (рис. 57).

Лобовое сопротивление зависит от формы тела и его положения относительно потока, что учитывается безразмерным коэффициентом сопротивления Сx, определя­емым экспериментально:

(33.1)

где r — плотность среды; v — скорость движения тела; S — наибольшее поперечное сечение тела.

Составляющую Rx можно значительно уменьшить, подобрав тело такой формы, которая не способствует образованию завихрения.

Подъемная сила может быть определена формулой, аналогичной (33.1):

где Су безразмерный коэффициент подъемной силы.

Для крыла самолета требуется большая подъемная сила при малом лобовом сопротивлении (это условие выполняется при малых углах атаки a (угол к потоку); см. рис. 55). Крыло тем лучше удовлетворяет этому условию, чем больше величина К=Суx называемаякачеством крыла. Большие заслуги в конструировании требу­емого профиля крыла и изучении влияния геометрической формы тела на коэффициент подъемной силы принадлежат «отцу русской авиации» Н. Е. Жуковскому (1847—1921).

Задачи

6.1. Полый железный шар (r =7,87 г/см3) весит в воздухе 5 Н, а в воде (r' = 1 г/см3) — 3 Н. Пренебрегая выталкивающей силой воздуха, определить объем внутренней полости шара. [139 см3]

6.2. Бак цилиндрической формы площадью основания S = 1 м2 и объемом V = 3 м3 заполнен водой. Пренебрегая вязкостью воды, определить время t, необходимое для опусто­шения бака, если на дне бака образовалось круглое отверстие площадью S1 =10 см2.

6.3. Сопло фонтана, дающего вертикальную струю высотой H = 5 м, имеет форму усеченного конуса, сужающегося вверх. Диаметр нижнего сечения d1 = 6 см, верхнего — d2 = 2 см. Вы­сота сопла h = 1 м. Пренебрегая сопротивлением воздуха в струе и сопротивлением в сопле, определить: 1) расход воды в 1 с, подаваемой фонтаном; 2) разность Dр давления в нижнем сечении и атмосферного давления. Плотность воды r =1 г/см3. [1) d2/4 = 3,1 х 10-3 м3/с; 2) Dp = pgh + pgH (1– d /d =58,3 кПа]

6.4. На горизонтальной поверхности стоит цилиндрический сосуд, в боковой поверхности которого имеется отверстие. Поперечное сечение отверстия значительно меньше поперечного сечения самого сосуда. Отверстие расположено на расстоянии h1 = 64 см ниже уровня воды в сосуде, который поддерживается постоянным, и на расстоянии h2 = 25 см от дна сосуда. Пренебрегая вязкостью воды, определить, на каком расстоянии по горизонтали от сосуда падает на поверхность струя, вытекающая из отверстия. [80 см]

6.5. В широком сосуде, наполненном глицерином (плотность r =1,2 г/см3), падает с устано­вившейся скоростью 5 см/с стеклянный шарик (r' = 2,7 г/см3) диаметром 1 мм. Определить динамическую вязкость глицерина. [1,6 Па×с]

6.6. В боковую поверхность цилиндрического сосуда, установленного на столе, вставлен на высоте h1 = 5 см от его дна капилляр внутренним диаметром d = 2 мм и длиной l = 1 см. В сосуде поддерживается постоянный уровеньмашинного масла (плотность r = 0,9 г/см3 и динамичес­кая вязкость h = 0,1 Па×с) на высоте h2 = 80 см выше капилляра. Определить, на каком расстоянии по горизонтали от конца капилляра падает на поверхность стола струя масла, вытекающая из отверстия.

6.7. Определить наибольшую скорость, которую может приобрести свободно падающий в воз­духе (r=1,29 г/см3) стальной шарик (r' = 9 г/см3) массой m = 20 г. Коэффициент Сх принять равным 0,5. [94 см/с]

Глава 7 Элементы специальной (частной) теории относительности

§ 34. Преобразования Галилея. Механический принцип относительности

В классической механике справедливмеханический принцип относительности (принцип относительности Галилея): законы динамики одинаковы во всех инерциальных систе­мах отсчета.

Для его доказательства рассмотрим две системы отсчета: инерциальную систему K (с координатами х, у, z), которую условно будем считать неподвижной, и систему K' (с координатами x', у', z'), движущуюся относительно K равномерно и прямолинейно со скоростью u (u=const). Отсчет времени начнем с момента, когда начала координат обеих систем совпадают. Пусть в произвольный момент времени t расположение этих систем друг относительно друга имеет вид, изображенный на рис. 58. Скорость u направлена вдоль OO', радиус-вектор, проведенный из О в О', r0=ut.

Найдем связь между координатами произвольной точки А в обеих системах. Из рис. 58 видно, что

(34.1)

Уравнение (34.1) можно записать в проекциях на оси координат:

(34.2)

Уравнения (34.1) и (34.2) носят название преобразований координат Галилея.

В частном случае, когда система К' движется со скоростью т вдоль положительного направления оси х системы К (в начальный момент времени оси координат совпадают), преобразования координат Галилея имеют вид

В классической механике предполагается, что ход времени не зависит от относи­тельного движения систем отсчета, т. е. к преобразованиям (34.2) можно добавить еще одно уравнение:

(34.3)

Записанные соотношения справедливы лишь в случае классической механики (u<<с), а при скоростях, сравнимых со скоростью света, преобразования Галилея заменяются более общими преобразованиями Лоренца* (§ 36).

* Х. Лоренц (1853—1928) — нидерландский физик-теоретик.

 

Продифференцировав выражение (34.1) по времени (с учетом (34.3)), получим уравнение

(34.4)

которое представляет собой правило сложения скоростей в классической механике.

Ускорение в системе отсчета К

Таким образом, ускорение точки А в системах отсчета К и К', движущихся друг относительно друга равномерно и прямолинейно, одинаково:

(34.5)

Следовательно, если на точку А другие тела не действуют (а=0), то, согласно (34.5), и а'=0, т. е. система К' является инерциальной (точка движется относительно нее равномерно и прямолинейно или покоится).

Таким образом, из соотношения (34.5) вытекает подтверждение механического принципа относительности: уравнения динамики при переходе от одной инерциальной системы отсчета к другой не изменяются, т. е. являютсяинвариантными по отношению к преобразованиям координат. Галилей обратил внимание, что никакими механичес­кими опытами, проведенными в данной инерциальной системе отсчета, нельзя устано­вить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно.

§ 35. Постулаты специальной (частной) теории относительности

Классическая механика Ньютона прекрасно описывает движение макротел, движущих­ся с малыми скоростями (v<<с). Однако в конце XIX в. выяснилось, что выводы классической механики противоречат некоторым опытным данным, в частности при изучении движения быстрых заряженных частиц оказалось, что их движение не подчи­няется законам механики. Далее возникли затруднения при попытках применить механику Ньютона к объяснению распространения света. Если источник и приемник света движутся друг относительно друга равномерно и прямолинейно, то, согласно классической механике, измеренная скорость должна зависеть от относительной скоро­сти их движения. Американский физик А. Майкельсон (1852—1913) в 1881 г., а затем в 1887 г. совместно с Е. Морли (американский физик, 1838—1923) пытался обнаружить движение Земли относительно эфира (эфирный ветер) —опыт Майкельсона — Морли, применяя интерферометр, названный впоследствии интерферометром Майкельсона (см. § 175). Обнаружить эфирный ветер Майкельсону не удалось, как, впрочем, не удалось его обнаружить и в других многочисленных опытах. Опыты «упрямо» показы­вали, что скорости света в двух движущихся друг относительно друга системах равны. Это противоречило правилу сложения скоростей классической механики.

Одновременно было показано противоречие между классической теорией и уравне­ниями (см. § 139) Дж. К. Максвелла (английский физик, 1831—1879), лежащими в ос­нове понимания светакак электромагнитной волны.

Для объяснения этих и некоторых других опытных данных необходимо было создать новую механику, которая, объясняя эти факты, содержала бы ньютоновскую механику как предельный случай для малых скоростей (v<<с). Это и удалось сделать А. Эйнштейну, который пришел к выводу о том, что мирового эфира — особой среды, которая могла бы быть принята в качестве абсолютной системы, — не существует. Существование постоянной скорости распространения света в вакууме находилось в согласии с уравнениями Максвелла.

Таким образом, А. Эйнштейн заложил основыспециальной теории относительности.Эта теория представляет собой современную физическую теорию пространства и вре­мени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно (см. § 13), а пространство однородно (см. § 9) и изотропно (см. § 19). Специальная теория относительности часто называется такжерелятивистской теорией,а специфические явления, описываемые этой теорией, —релятивистскими эффектами.

В основе специальной теории относительности лежат постулаты Эйнштейна, сфор­мулированные им в 1905 г.

I. Принцип относительности: никакие опыты (механические, электрические, оптичес­кие), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной систе­мы отсчета к другой.

П. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат Эйнштейна, являясь обобщением механического принципа от­носительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы от­счета совершенно равноправны, т. е. явления (механические, электродинамические, оптические и др.) вовсех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату Эйнштейна, постоянство скорости света — фундаме­нтальное свойство природы, которое констатируется как опытный факт.

Специальная теория относительности потребовала отказа от привычных представ­лений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.

Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное эксперимен­тальное подтверждение, являясь тем самым обоснованием постулатов Эйнштей­на — обоснованием специальной теории относительности.

§ 36. Преобразования Лоренца

Анализ явлений в инерциальных системах отсчета, проведенный А. Эйнштейном на основе сформулированных им постулатов, показал, что классические преобразования Галилея несовместимы с ними и, следовательно, должны быть заменены преобразова­ниями, удовлетворяющими постулатам теории относительности.

Для иллюстрации этого вывода рассмотрим две инерциальные системы отсчета: К (с координатами х, у, z) и К' (с координатами х', у', z'), движущуюся относительно К (вдоль оси х) со скоростью v = const (рис. 59). Пусть в начальный момент времени t=t'=0, когда начала координат О и О' совпадают, излучается световой импульс. Согласно второму постулату Эйнштейна, скорость света в обеих системах одна и та же и равна с. Поэтому если за время t в системе К сигнал дойдет до некоторой точки А (рис. 59), пройдя расстояние

х = ct, (36.1)

то в системе К' координата светового импульса в момент достижения точки А

х' = ct'. (36.2)

где t' — время прохождения светового импульса от начала координат до точки А в си­стеме К'. Вычитая (36.1) из (36.2), получаем

х' – х = c(t' – t).

Так как х' ¹ х (система К' перемещается по отношению к системе К), то

t' ¹ t,

т. е. отсчет времени в системах К и К' различен — отсчет времени имеет относитель­ный характер (в классической физике считается, что время во всех инерциальных системах отсчета течет одинаково, т. е. t=t').

Эйнштейн показал, что в теории относительности классические преобразования Галилея, описывающие переход от одной инерциальной системы отсчета к другой:

заменяются преобразованиями Лоренца, удовлетворяющими постулатам Эйнштейна (формулы представлены для случая, когда К' движется относительно К со скоростью v вдоль оси х).

Эти преобразования предложены Лоренцем в 1904 г., еще до появления теории относительности,как преобразования, относительно которых уравнения Максвелла (см. § 139) инвариантны.

Преобразования Лоренцаимеют вид

(36.3)

Из сравнения приведенных уравнений вытекает, что они симметричны и отличаются лишь знаком при v. Это очевидно, таккак если скорость движения системы К' относительно системы К равна v, то скорость движения К относительно К' рав­на –v.

Из преобразований Лоренца вытекает также, что при малых скоростях (по сравне­нию со скоростью с), т. е. когда b<<1, они переходят в классические преобразования Галилея (в этом заключается сутьпринципа соответствия), которые являются, следова­тельно, предельным случаем преобразований Лоренца. При v>c выражения (36.3) для х, t, х', t' теряют физический смысл (становятся мнимыми). Это находится, в свою очередь, в соответствии с тем, что движение со скоростью, большей скорости распрост­ранения света в вакууме, невозможно.

Из преобразований Лоренца следует очень важный вывод о том, что как расстоя­ние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках преобразова­ний Галилея эти величины считались абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и временные преоб­разования (см. (36.3)) не являются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени — пространственные координаты, т. е. устанавливается взаимосвязь пространства и времени. Таким об­разом, теория Эйнштейна оперирует не с трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространст­венные и временные координаты, образующие четырехмерное пространство-время.

§ 37. Следствия из преобразований Лоренца

1. Одновременность событий в разных системах отсчета. Пусть в системе К в точках с координатами x1 и x2 в моменты времени t1 и t2 происходят два события. В системе К' им соответствуют координаты и и моменты времени и . Если события в системе К происходят в одной точке (x12 являются одновременными (t1 =t2), то, согласно преобразованиям Лоренца (36.3),

т. е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.

Если события в системе К пространственно разобщены (х1 ¹ x2), но одновременны (t1 = t2), то в системе К', согласно преобразованиям Лоренца (36.3),

Таким образом, в системе К' эти события, оставаясь пространственно разобщенными, оказываются и неодновременными. Знак разности определяется знаком выраже­ния v (x1x2), поэтому в различных точках системы отсчета К' (при разных v) разность будет различной по величине и может отличаться по знаку. Следовательно, в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Сказанное, однако, не относится к причинно-следственным событиям, так как можно показать, что порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.

2. Длительность событий в разных системах отсчета. Пусть в некоторой точке (с координатой х), покоящейся относительно системы К, происходит событие, длитель­ность которого (разность показаний часов в конце и начале события) t = t2 – t1, где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К'

(37.1)

причем началу и концу события, согласно (36.3), соответствуют

(37.2)

Подставляя (37.2) в (37.1), получаем








Дата добавления: 2015-10-29; просмотров: 427;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.042 сек.